Строительный портал - DomNaneve

Градус жесткости воды в мг экв л. Жесткость воды. Как определить жесткость воды различного типа

Экология потребления. Наука и техника: Рассказ пойдёт о том, что загрязняет воду, как её чистят и почему я спокойно пью из родника, содержащего много нитратов.

Как правильно отобрать воду на анализ?

Тщательность, с которой вы выполните отбор пробы воды, в конечном счёте может существенно повлиять на цену установки. Вот общие рекомендации.

  1. Возьмите чистую пластиковую бутылку объёмом 1.5 л. Ни в коем случае не используйте бутылки, в которых ранее находились содержащие органические вещества жидкости (квас, пиво, кефирчик, уайт-спирит) или высокоминерализованные воды. Подойдут бутылки из-под питьевой воды. Идеальный вариант - купить новую бутылку там, где торгуют напитками на розлив.
  2. Если у вас скважина - пролейте её до постоянного состава. Рекомендации, как это сделать, должны предоставить ваши скваженщики. Некоторые наши заказчики рассказывали, что их скважина работала на излив по две-три недели.
  3. Откройте ближайший к скважине кран до любых существующих фильтров, баков и других устройств, могущих оказывать влияние на состав воды, и пролейте несколько минут, чтобы обновить воду в трубах.
  4. На два раза ополосните бутылку отбираемой водой, после чего налейте воду под самое горлышко, навинтите крышку, слегка сожмите бутылку с боков, чтобы вода потекла через край, и завинтите крышку до конца. Цель: набрать воду без воздушного пузыря.
  5. Доставьте воду в лабораторию в тот же день. Если нет такой возможности - храните воду в холодильнике не более двух суток.

Далее по анализу инженерами подбирается и рассчитывается система водоочистки, и если вас устраивает коммерческое предложение и вы его оплачиваете - к вам выезжают монтажники с оборудованием. Монтажникам от вас потребуются вход, выход и дренаж - откуда брать воду, куда её подавать и куда сливать. Особое внимание следует уделить именно канализации. Если у вас яма и вы её откачиваете - позаботьтесь о том, чтобы она могла одномоментно принять на себя 2-3 кубометра воды без последствий. Почему? Фильтры пропускают через себя грязную воду, грязь оседает на фильтрующем материале. Со временем ёмкость фильтрующего материала исчерпывается и он нуждается в обратной промывке - током воды снизу вверх вся грязь с него смывается в канализацию. На одну промывку может уходить от ста литров до полутора кубометров воды, в зависимости от типа фильтра и уровня загрязнения. И всё это количество сольётся в дренаж минут за 20 для кабинетных фильтров и где-то за час для засыпных колонного типа.

Примечание. Здесь и далее я буду приводить значения в масштабах частного домовладения.

Между прочим, если в Вашем септике применяется биологическая очистка, дренажная вода может убить её. Также монтажники потребуют с вас электрическую розетку поблизости (фильтры оснащены контроллерами - электронными управляющими мозгами, которые сами знают, когда пора начинать промывку). И ещё учтите, что эксплуатироваться любые фильтры должны при температуре не ниже +5 °C, а места занимают - в зависимости от модели - до двух квадратных метров по площади и до двух метров в высоту (хотя самый маленький фильтр со всей обвязкой может поместиться в кубический метр). Да, не забудьте про давление воды на входе! Если оно меньше 2-3 атмосфер - без повысительного насоса не обойтись. Для сравнения, системы горводоканалов обычно подают в квартиры воду под давлением около 4 атмосфер.

На входе перед фильтрами ставят грубую очистку - сетчатые фильтры, механику до 20 мкм - чтобы защитить более дорогое оборудование от проскоков песка, ржавчины и других крупных частиц. На выходе после установки рекомендуется монтировать финишную доочистку (обычно уголь - удаляет запахи, хлор и мелкие частицы). В самой дорогой комплектации ещё могут присутствовать ультрафиолетовая лампа для обеззараживания на выходе и защита от протечек на полу, но всё это опции. А вот если Ваша вода содержит много железа, то инженер может спроектировать водоочистку с применением баков, которые занимают значительное пространство.

А много железа - это сколько?

Вот теперь можно поговорить о вещах, более близких к моей профессии. И начнём мы с единиц измерения. В России и за рубежом, как ни парадоксально, применяются совершенно разные единицы измерения, хотя химия одна и та же. У нас приняты мг/л и мг-экв/л, у них - ppm.

мг/л (читается: миллиграмм на литр) - это масса исследуемых частиц, содержащаяся в одном литре раствора (а не растворителя!). Если мы исследуем ионный состав воды, то под массой частиц будет подразумеваться масса атомов одного вида. Например, 10 мг/л железа означает, что в 1 литре раствора у вас содержится 10 мг атомарного железа - того самого, у которого молярная масса, согласно таблице Менделеева, 56 г/моль. И не важно, в какой форме это железо - двухвалентный ион или трёхвалентный. Просто некая абстракция - железо, как оно есть в таблице Менделеева. А если мы измеряем содержание какой-то соли, то под массой частиц будет подразумеваться масса молекулы этой соли. Например, 10 мг хлорида натрия NaCl в 1 литре раствора.

мг-экв/л (читается: миллиграмм-эквивалент на литр) - с этого момента начинается особая чёрная магия. Иеремия Рихтер, немецкий химик, открыл закон эквивалентов (и попутно портал в ад) в 1792 году. Закон гласит: вещества реагируют в количествах, пропорциональных их эквивалентам, или m1Э2 = m2Э1. Попробуйте найти химика, который приходит в восторг, считая эквиваленты! Мне такие маньяки пока не встречались, хотя я занимаюсь химией уже 14 лет. Начнём издалека. Возьмём обычную реакцию между мелом и соляной кислотой:

CaCO 3 + 2HCl = CaCl 2 + H 2 O + CO 2

Улетевший углекислый газ и воду отбросим, как несущественное, и выделим в этой реакции самое важное:

Ca 2+ + 2Cl - = CaCl 2 (в ионной форме)

Теперь возьмём каждый из ионов и заставим его вступить в гипотетическую реакцию гидрирования с катионом водорода, невзирая на знак заряда (да, мы, химики, любим всякие извращения; а на самом деле - масса катиона водорода принята за единицу, и теперь нам нужно найти количество других ионов, эквивалентное этой единице).

1/2Ca 2+ + H + = CaH (фактор эквивалентности = 0.5, а эквивалент водорода - частица 1/2Ca 2+)

Cl - + H + = ClH (фактор эквивалентности = 1, а эквивалент водорода - частица Cl -)

Итак, с одним катионом водорода может (условно) прореагировать либо один анион хлора, либо половинка катиона кальция. Численное выражение доли вещества, эквивалентной одному катиону водорода, называется фактором эквивалентности. Теперь мы можем сделать простой вывод:

1/2Ca 2+ = Cl - (1 эквивалент кальция = 1 эквиваленту хлора)

Представим, что мы титруем щёлочность соляной кислотой (об этих страшных словах - позже). С соляной кислотой могут реагировать самые разные соли (гидрокарбонаты, карбонаты, гидроксиды...) самых разных ионов (кальция, магния, натрия...). Как нам всё это выразить в одной единице измерения? Мы не имеем права использовать здесь уже знакомую нам единицу измерения мг/л, потому что просто непонятно - миллиграмм чего? Кальция? Магния? Их смеси? В каком соотношении? Зато с эквивалентами эта проблема снимается сама собой:

Cl - = 1/2Ca 2+ = 1/2Mg 2+ = Na + = 1/3Al 3+ и т.д.

Нам не важно, какой именно вид катиона или аниона мы оттитровали, но мы знаем, что одному эквиваленту потраченной соляной кислоты всегда будет соответствовать один эквивалент неведомой штуки, которая с этой кислотой способна прореагировать. Хорошо, с эквивалентом более-менее разобрались. А что же такое миллиграмм-эквивалент? Это масса одного эквивалента в миллиграммах. Грубо - считается по таблице Менделеева как молярная масса, умноженная на фактор эквивалентности. Для приведённого выше отношения это будет выглядеть так:

35.45 мг Cl - = 20.04 мг Ca 2+ = 12.15 мг Mg 2+ = 22.99 мг Na + = 8.99 мг Al 3+

Заметьте, молярная масса, например, кальция равна 40.08 г/моль, но с 1 граммом водорода может прореагировать только половинка кальция - 20.04 грамма. Вот эта цифра - 20.04 - и будет грамм-эквивалентом кальция. Или миллиграмм-эквивалентом. Или микрограмм-эквивалентом. Эта единица удобна тем, что если мы когда-нибудь выясним, какое именно соединение прореагировало в той реакции с соляной кислотой, мы всегда сможем умножить количество миллиграмм-эквивалентов на массу одного эквивалента - и перевести таким образом миллиграмм-эквиваленты в обычные миллиграммы для конкретного соединения. Итак, мг-экв/л - это количество миллиграмм-эквивалентов вещества в одном литре раствора.

ppm (читается: пи-пи-эм, parts per million) - число частиц на миллион. Показывает, сколько исследуемых растворённых частиц находится в одном миллионе частиц раствора (не растворителя!). Единица измерения применяется на Западе почти повсеместно. Соответствует нашему мг/л (потому что миллиграмм - это, вроде как, тоже миллионная часть от литра, при условии, что плотность раствора равна 1.00, но при таком разбавлении изменением плотности всё равно можно пренебречь).

мкСм/см (читается: микросименс на сантиметр) - единица измерения удельной электропроводности воды. Берут два электрода, погружают в воду. На один подают известное количество тока, на втором измеряют, сколько дошло. Поскольку в водном растворе носителями заряда являются ионы, то по количеству перенесённых с одного электрода на другой электрончиков можно сделать вывод об общей доле ионов в растворе. Сименс - единица, обратная сопротивлению (1 См = 1 Ом -1). Измерение удельной электропроводности иногда может дать достаточно точное представление об общем солесодержании воды. Если вода относительно чистая, то условно можно считать, что 1 мкСм/см ≈ 0.5 мг/л солей. И вот мы вплотную подошли к сущности анализа воды.

Тут надо отвлечься и уточнить, что видов анализов воды - масса. Навскидку, есть химический и микробиологический. А ещё органолептический, радиометрический, несть им числа. Я занимаюсь непосредственно химическим анализом воды, о нём и поговорим. В России документ, регламентирующий качество воды для хозяйственно-бытовых нужд, называется «СанПиН 2.1.4.1074-01». И контролируемых параметров там - тьма тьмущая. Здесь уместно отметить, что такого понятия, как «техническая вода», ни в одном официальном документе не существует. Более того, то, что обычно в простонародье подразумевают под технической водой - это как раз вода, которую можно пить, но нельзя использовать в той самой технике. Подчас на производство или в паровой котёл нужно подавать полностью обессоленную (деионизованную) воду.


Смотреть в лаборатории все параметры, подразумеваемые СанПиНом - сумасшествие. Во-первых, на анализ одной пробы уйдёт тогда неделя (тогда как анализ по 12 показателям делается за 2 часа). А во-вторых, существующие фильтрующие материалы всё равно очищают воду только от конечного числа загрязнителей. И, конечно, большая часть указанных в СанПиНе загрязнителей практически не встречается в обычных природных водах или встречается в таком количестве, что заведомо проходит по нормам. Пойдём по порядку со всеми комментариями (по какому именно порядку - я ещё не решил).

Железо. Есть практически во всех подземных водах, а вот в поверхностных - реках, озёрах - обнаружить его можно нечасто. Бывает в двух формах: растворимое, или двухвалентное Fe 2+ и окисленное, или трёхвалентное Fe 3+ . Соли двухвалентного железа прекрасно растворяются в воде (железный купорос FeSO 4 ∙ 7H 2 O многие садоводы найдут в профильных магазинах), однако кислородом воздуха очень быстро окисляются и переходят в соединения трёхвалентного железа. А вот соединения трёхвалентного железа в воде не растворимы - ржавчину все видели, а ржавчина это смесь Fe 2 O 3 ∙ nH 2 O и Fe(OH) 3 .

FeCl 3 прекрасно в воде растворяется, после чего гидролизуется до оксихлорида и выпадает в осадок. То же самое касается других растворимых соединений трёхвалентного железа - они подвержены гидролизу в водном растворе с образованием нерастворимых продуктов.

Поэтому в поверхностных источниках железа мало: оно если и было изначально, то быстро окислилось при контакте с атмосферой и ушло в ил. Помимо атмосферы, естественным врагом двухвалентного железа являются железобактерии, которые живут за счёт энергии, выделяемой при окислении ими двухвалентного железа. Зато у него есть верный союзник в виде сероводорода. В подземных водах часто содержится сероводород в большом количестве, а он является сильным восстановителем и не даёт железу окисляться даже при контакте с атмосферой. Вообще, зависимость формы железа в растворе от окислительно-восстановительного потенциала и водородного показателя наглядно отображена в диаграммах Пурбе. Железо является одним из микроэлементов и необходимо организму человека (суточная потребность - 10 мг), и усваивается, в том числе, из воды. Конечно, содержание железа сказывается на органолептических свойствах воды (если его больше 1-2 мг/л), а избыточное его поступление в организм может спровоцировать разные отклонения в здоровье. Ну, это всегда так. Всё есть лекарство и всё есть яд, всё дело в дозе, сказал Парацельс.

ПДК железа общего в воде хозяйственно-бытового назначения составляет 0.3 мг/л. В городском водопроводе с труб при ржавлении летит примерно 0.10...0.15 мг/л (там, где я живу). Удаляют железо просто: сначала окисляют, чтобы наверняка (напомню, окисленное железо в воде не растворимо), затем полученные частички коагулируют (укрупняют), и всю эту конструкцию ловят механическим способом - на слое загрузки. Существуют разные каталитические загрузки, на поверхности которых все указанные процессы и происходят. Представляют они собой песок, покрытый слоем оксида марганца - того самого катализатора окисления железа - и нуждаются в периодической реагентной промывке раствором перманганата калия (нет, соединения марганца не смываются с загрузки и не попадают в очищенную воду - ну, если, конечно, вы не захотите смешать каталитический материал с лимонной кислотой). Есть и безреагентные загрузки, но перед ними требуется предварительное окисление железа, а уж каким способом - атмосферным воздухом, озоном или хлором - решит инженер. Если в Вашей воде железа до 5 мг/л - считайте, что Вам крупно повезло: установка будет подешевле. Если железа 10 мг/л - уже дорого. А вот 30 мг/л и выше - можете распрощаться с планируемой поездкой в тёплые страны. Такая установка может стоить несколько сотен тысяч рублей. Вообще, основная стоимость большинства полупромышленных систем фильтрации как раз зависит от концентрации железа. Чем его больше - тем дороже. Поэтому так важно тщательно пролить воду перед отбором пробы - застоявшаяся в металлических трубах вода может набрать железа, и инженер предложит вам по анализу такую установку, на которую у Илона Маска денег не хватит. Но и это ещё не всё. Отдельно стоит упомянуть про так называемое органическое железо - комплексные органические соединения, содержащие в составе молекулы атом железа (как правило, гуматы - комплексы гуминовых кислот). Выбить железо из таких комплексов нелегко, и оно не окисляется на воздухе. Удаление из воды органического железа может быть затруднительным.

Марганец. От марганца на сантехнике появляется серый налёт, поэтому нормируют его жёстко. Организму человека этот микроэлемент тоже необходим (суточная потребность 2 мг ). Из воды легко усваивается. Ещё содержится в свёкле и половине овощей вообще. Валентностей у марганца целых семь, подробно рассматривать не имеет смысла. Двухвалентный марганец хорошо растворим, трёх- и четырёхвалентный обычно подвергается гидролизу и выпадает в виде нерастворимых гидроксидов. В отличие от железа, марганец в поверхностных водах встречается чаще. Особенно если это колодцы, и в подземной воде, питающей их, содержится какой-нибудь двухвалентный ион марганца. Дело в том, что марганец так вот запросто атмосферным воздухом не окисляется. Может захватываться осаждающимся железом и удаляться совместно с ним. Загрузки все те же самые, ибо принцип тот же: окисление, укрупнение и механическая фильтрация. ПДК 0.1 мг/л.

Жёсткость. Жёсткость замыкает тройку параметров, на которые нацелены почти все полупромышленные системы очистки воды. Да-да, есть фильтры-обезжелезиватели (удаляют железо, марганец и некоторые другие тяжёлые металлы) и фильтры-умягчители (удаляют жёсткость). Безусловно, есть другие типы фильтров, которые работают, например, по окисляемости, но в конечном итоге для промышленных нужд вам предложат обратный осмос с предочисткой, тогда вода на выходе будет как по ГОСТу для лабораторий: 3...5 мкСм/см. Но мы отвлеклись. В школе вам рассказывали, что жёсткость - это совокупность ионов кальция и магния. Именно они выпадают в виде накипи при кипячении воды. На самом деле, такое определение не совсем корректно. Да, значительную долю жёсткости составляют ионы кальция и магния, но вообще жёсткость - это сумма всех щелочноземельных ионов, а также некоторых двухвалентных ионов тяжёлых металлов. Цинк, барий, кадмий, даже двухвалентное железо - это всё жёсткость. Другое дело, что химик в лаборатории будет маскировать ионы двухвалентного железа при измерении жёсткости. Зато кадмий вполне себе на величине жёсткости отразится. Но поспешу вас успокоить: ионов кальция в составе жёсткости большинство - как правило, процентов 80, и ещё процентов 15 магния. Нормируют жёсткость исключительно для снижения количества накипи в чайниках, а особо рьяно - в отраслевых стандартах для всяких котельных, где жёсткости в воде быть не должно вообще. Иногда вы можете услышать, что использовать в хозяйстве нужно исключительно мягкую воду, а жёсткая, якобы, вредна. Жёсткая вода увеличивает затраты на мыло, уменьшает срок жизни стиральной машинки… Вас могут начать убеждать, аргументируя тем, что кальций из воды всё равно не усваивается, и организм получает его из молока и сыра. Это некорректно.

Давайте отвлечёмся и кратко поговорим о процессе скисания молока. В молоке содержится казеинат кальция и молочный сахар лактоза. Микроорганизмы, попавшие в молоко, начинают сбраживать лактозу, постепенно превращая её в молочную кислоту. Молочная кислота выбивает из казеината кальция кальций и замещает его на ион водорода. Казеинат кальция при этом превращается в казеин - белок молока, из которого целиком состоит творог. А кальций остаётся в сыворотке в виде лактата кальция. Так что творог и сыр кальцием бедны. А в натуральном свежем молоке - да, кальций есть. Но, чтобы усвоиться, он сначала должен быть выбит из казеината соляной кислотой желудка. В воде же кальций уже готовый - сразу в ионной форме, и усваивается мгновенно. Поэтому, вода - один из важнейших источников кальция в организме, а нужно нам его немало - суточная потребность составляет не менее 1000 мг. ПДК по жёсткости - 7 мг-экв/л. Если переводить это в кальций, то в воде может содержаться (7 ∙ 20.04) 140 мг/л кальция. Так что вам потребуется выпить 7-8 литров воды, чтобы получить суточную норму. Однако накипь начинает заметно образовываться уже при содержании жёсткости порядка 4 мг-экв/л. Ручное кусковое мыло - смесь натриевых солей высших жирных кислот - при контакте с жёсткой водой превращается в смесь кальциевых солей высших жирных кислот, а кальциевые соли мыла в воде растворяются плохо. Но сейчас производители добавляют в мыло умягчающие агенты - например, трилон Б, которые нивелируют этот процесс. Синтетические же моющие средства - порошки, гели и прочие лаурилсульфаты - вообще жёсткости не боятся и никак ею не осаждаются. Вывод? Пить полезно жёсткую воду (7 мг-экв/л согласно СанПиН), руки с мылом мыть в воде с содержанием жёсткости 2...4 мг-экв/л, на стиральную и посудомоечную машины подавать мягкую воду (< 0.1 мг-экв/л), и то - лишь для того, чтобы не обрастал нагревательный элемент. Что касается чайников, то при жёсткости порядка 2 мг-экв/л образование накипи на нагревательном элементе практически незаметно. Обратите внимание, что не все соединения кальция и магния выпадают в виде накипи при кипячении. Строго говоря, это свойственно только гидрокарбонатам, а всякие хлориды и сульфаты как плавали в воде до кипячения, так и будут плавать после. Обычно в речной воде (а реки обеспечивают водой большинство наших поселений) величина жёсткости, в зависимости от сезона, составляет 2..4 мг-экв/л (зимой ниже).

Для удаления из воды солей жёсткости используют катионообменные смолы, которые попутно связывают большинство других катионов, в том числе марганец и двухвалентное железо. Поэтому существуют варианты фильтров, удаляющих одновременно железо, марганец и жёсткость на одной загрузке, но есть нюансы - железо и марганец должны содержаться в воде в небольшом количестве, при этом железо обязательно должно быть двухвалентным (в ионной форме). Таким фильтрам необходима регенерация солевым раствором, поэтому расходный материал здесь - таблетированная соль (также как в обезжелезивателях расходным материалом может быть марганцовка). Катионообменная смола заряжена ионами натрия. Жёсткая вода, проходя через слой такой загрузки, будет обмениваться со смолой ионами - отдавать кальций/магний, забирать натрий. В конце концов, заряд ионов натрия на смоле израсходуется, после чего контроллер отключит потребителей и зальёт в фильтр крепкий раствор хлорида натрия. Произойдёт обратная замена, все осевшие на смоле ионы жёсткости перейдут в раствор, который далее сольётся в дренаж. А смола, заново перезаряженная ионами натрия, сможет и дальше чистить воду.

Отдельно хочется рассказать о китайских карманных приборчиках, которые якобы измеряют жёсткость. На самом деле, эти приборчики - обычные кондуктометры, или TDS-метры. Они измеряют удельную электропроводность воды в мкСм/см, полученное значение умножают на примерно 0.5 и получают некую величину в ppm. И весело рапортуют вам, что жёсткость вашей воды, скажем, 250 ppm. Ну, во-первых. На Западе жёсткость действительно измеряют в ppm, при этом они считают по карбонату кальция.

Молярная масса карбоната кальция 100 мг/ммоль, фактор эквивалентности 0.5, следовательно, один миллиграмм-эквивалент карбоната кальция «весит» 50 мг. Так как мг/л и ppm - практически одно и то же, то при переводе в наши родные единицы измерения 50 ppm = 1 мг-экв/л жёсткости. Во-вторых, кондуктометрическим методом, как я уже говорил, определяют общее солесодержание, сумму всех анионов и катионов в растворе. Измерить этим методом отдельно жёсткость практически невозможно (возможно, если предварительно в лаборатории выяснить, какой процент ионы кальция и магния составляют от суммы всех ионов конкретно в данной воде, вычислить поправочный коэффициент и потом кондуктометрически эту же самую воду измерить). А все эти якобы измерители жёсткости просто определяют общее солесодержание в предположении, что кроме карбоната кальция в воде ничего не растворено.

Щёлочность. Не нормируется, представляет собой всё, что способно прореагировать с 0.1М раствором соляной кислоты. В наших природных водах это, в основном, карбонаты и гидрокарбонаты. По щёлочности можно примерно прикинуть, какой процент карбонатной (временной) жёсткости в вашей воде. Остальная часть жёсткости будет некарбонатной, то есть той, которая в осадок не выпадает при кипячении (хлориды, сульфаты...). Этот параметр больше нужен инженерам в их расчётах (особенно интересно посмотреть на буферность воды). Специфических методов удаления щёлочности нет, да её и удалять не требуется.

Азотистые соединения: нитраты, нитриты, аммоний. Как только в начале лета в продаже появляются арбузы, все вокруг начинают обсуждать нитраты. Между тем, нитраты совершенно безопасны. Их ПДК составляет 45 мг/л. А вот нитриты… Попадая в кровь, нитриты связываются с гемоглобином, превращая оксигемоглобин в метгемоглобин, неспособный переносить кислород. ПДК нитритов в воде хозяйственно-бытового назначения 3 мг/л. Но почему никто не бьёт панику, читая в составе колбасы строку «нитритно-посолочная смесь»? Ведь это смесь нитрита натрия с хлоридом натрия. Благодаря своей способности связываться с белками крови, а также вступать в реакции азосочетания, нитрит помогает окрашивать мясо в красный цвет. Без применения нитритов в составе колбасы вы бы ели совершенно серую и неприглядную продукцию. Зато были бы здоровее, ведь так? Давайте внимательнее рассмотрим этот момент. Производители утверждают, что в их посолочной смеси нитрита натрия всего 0.6%. Ещё у человека есть фермент метгемоглобинредуктаза, который способен починить неработающий гемоглобин, так что рано накрываться простынкой и с колбасой в зубах ползти на кладбище. Превращения нитратов в нитриты в организме человека (а именно этим вас могут запугивать, апеллируя к таинственному ферменту нитратредуктазе), строго говоря, невозможно собственными силами организма. Считается, что у животных и человека этот фермент отсутствует, и я пока не видел статей, доказывающих обратное. Зато у нас в ротовой полости живут микроорганизмы, вырабатывающие этот фермент. Действительно, они способны превращать нитраты в нитриты. Мы все умрём, да? Нет. Процесс редуцирования нитратов не быстрый, КПД не высокий. Да и конечные продукты потребляются, собственно, теми микроорганизмами, которые фермент вырабатывают. Они так азот усваивают.

Кроме того, этот экзогенный нитратный цикл играет огромную роль в сохранении и улучшении нашего здоровья, хотя бы потому, что нормализует давление, защищает от кариеса и убивает бактерии. Помимо нитратредуктазы, живность в нашей ротовой полости вырабатывает и нитритредуктазу, превращающую нитрит дальше в ион аммония. Ион аммония влияет на кислотно-щелочной баланс жидких сред организма. Есть сведения, что при переизбытке он может защелачивать кровь. Наш организм сам выделяет аммоний при распаде белков и далее связывает его в мочевину (то есть, методы нейтрализации существуют). ПДК аммония в воде хозяйственно-бытового назначения 2.6 мг/л (в СанПиНе: 2 мг/л по азоту). Как правило, в природных водах нитраты, нитриты и аммоний не превышают ПДК, хотя есть нечастые исключения. Удаление этих соединений из воды более-менее гарантируется только обратным осмосом. Конечно, нитраты с нитритами сядут на анионообменной смоле, а аммоний - на катионообменной, но в силу своих физико-химических свойств они могут быть быстро выбиты со смолы другими ионами, содержащимися в воде.

Окисляемость. Иначе - химическое потребление кислорода. Это всё, что способно окислиться перманганатом калия в сернокислой среде: органические молекулы, одноклеточные водоросли, двухвалентное железо… Правда, химик-аналитик при измерении окисляемости железо вычтет. В целом, по окисляемости можно косвенно судить о биологическом загрязнении воды. Единица измерения окисляемости - мгО/л (количество миллиграммов атомарного кислорода, поглощённое литром исследуемого раствора). Органическое железо и окисляемость могут быть связаны между собой. ПДК перманганатной окисляемости 5 мгО/л. Есть загрузки, которые работают по окисляемости. Но при пороговом её содержании в вашей воде инженер скорее предложит угольный фильтр.

Сероводород и радон. Сероводород ядовит и дурно пахнет, радон радиоактивен. Не должны присутствовать в воде вообще, ибо пользы от них никакой. Сероводород можно окислить до элементарной серы на специальных загрузках, но только до определённой концентрации. Самый надёжный метод, позволяющий удалить оба этих растворённых газа из воды, - отдувка. Через воду барботируют атмосферный воздух, в результате чего оба газа выдуваются из воды и уходят вместе с подаваемым воздухом в окружающую атмосферу, отравляя всё вокруг. Помещение, в котором происходит этот процесс, обязательно должно быть техническим (нежилым) с хорошей вентиляцией.

Сульфаты, хлориды. ПДК первых 500 мг/л, вторых 350 мг/л. Токсикологии никакой. Нормируют из-за вкуса: сульфаты горчат, хлориды солонят. Удаляют обратным осмосом.

Осмотическое давление, благодаря которому растения всасывают воду из почвы, действует по следующему принципу: если два раствора разделены полупроницаемой перегородкой, через которую могут проникнуть молекулы воды, но не пройдут ионы, то растворитель перетекает из области с меньшей концентрацией в область с большей, уравнивая концентрации. Обратный осмос использует точно такую же полупроницаемую мембрану, но искусственно создаётся давление как раз в области с большей концентрацией, в результате чего растворитель перетекает в область с меньшей концентрацией, а раствор концентрируется. При этом входной поток воды разделяется на два: пермеат (чистая вода) и концентрат, который сливается в дренаж. В бытовых осмосах соотношение пермеат: концентрат составляет примерно 1: 3 (3 части входной воды сливаются в дренаж). В дорогих промышленных этот процесс компенсируют, иначе потери будут страшными.

Водородный показатель. Он же pH. На нём и будем закругляться. Представляет собой отрицательный десятичный логарифм из концентрации ионов водорода, индицирует кислотность среды. Нормируется в диапазоне 6-9 ед. pH. Более кислый раствор растворит вам зубы, более щелочной начнёт раздражать слизистую желудка. Очень важный параметр для подбора оборудования - многие загрузки работают в определённом диапазоне pH. В природных водах почти всегда находится вблизи отметки 7 ед. pH, в каких-то экстраординарных случаях инженер может предложить дозировать в воду щёлочь или кислоту для достижения заданного значения кислотности.

В конце хочу добавить пару слов о типах фильтров. Я упоминал в тексте кабинетные системы и фильтры колонного типа. В сущности, это одно и то же. Есть некий баллон, внутри которого располагаются дренажно-распределительная система и фильтрующий материал. Только в кабинетных системах это всё зажато в небольшой объём и помещено в корпус размером со стиральную машинку. Из плюсов - меньший расход воды и реагентов на промывку, из минусов - один фильтрующий материал на все параметры. Фильтры колонного типа более гибкие в настройке - например, если кабинетник сразу удалит вам железо, марганец и жёсткость в ноль, и вы ничего с этим не сделаете, то, поставив последовательно две колонны - одну по железу, вторую по жёсткости - вы сможете регулировать выходную жёсткость воды так, чтобы вам было комфортно принимать душ (чтобы не было ощущения, будто мыло не смывается), при этом железа и марганца в очищенной воде не будет. Помните, что типоразмер баллона зависит от вашего водопотребления, и нельзя ставить самый маленький баллончик на расход воды в два кубометра в час. Просто начнутся проскоки загрязнений, и в конце концов вы убьёте фильтрующий материал. Фильтрующие материалы, к слову, обычно служат 5-7 лет, после чего их необходимо заменять. Но прежде рекомендую провести анализ воды на выходе, потому что я лично щупал фильтр, который исправно работает 11 лет на одной загрузке.

Материал получился большой, можно почитать на ночь, чтобы быстрее заснуть и крепче спать. Я попытался объять необъятное, рассказал самую суть и сейчас дополню, разве что, про бактериологическую очистку. Есть всего один метод убить живность в воде - окислить её. Для этого в простейшем случае в воду будут дозировать хлор в виде гипохлорита или на выходе поставят ультрафиолетовую лампу. Ультрафиолет ионизирует растворённый в воде кислород, а активный кислород как раз и убьёт бактерии. Оптимальный вариант - озонатор. УФ-лампа или озонатор ставятся на выходе после всей очистки, непосредственно перед подачей воды потребителю, а хлор - наоборот, в начале. Потому что хлор более медленный окислитель и ему нужно дать время, а потом излишки хлора нейтрализовать на угольном фильтре.

В водоочистке ещё очень много нюансов и подводных камней. Но… «Это неописуемо!» - сказала Моська, глядя на баобаб. опубликовано

Если у вас возникли вопросы по этой теме, задайте их специалистам и читателям нашего проекта .

Жесткость воды обусловлена присутствием в ней растворенных солей кальция и магния. Различают общую, карбонатную и некарбонатную жесткость.

Общей жесткостью (Жо) называется суммарная концентрация ионов Ca 2+ и Mg 2+ в воде, выраженная в моль/м 3 или ммоль/дм 3 .Общая жесткость воды (Ж О) равна сумме карбонатной и некарбонатной жесткости.

Ж О = [Са 2+ ] + = Ж К + Ж НК ; (ммоль/дм 3)

Количественно жесткость воды определяется суммой молярных концентраций эквивалентов ионов кальция и магния, содержащихся в 1 дм 3 воды (ммоль/дм 3 , мг - экв/дм 3).

Карбонатная (временная) жесткость (Ж К) обусловлена содержанием в воде преимущественно гидрокарбонатов (и карбонатов при рН > 8,3) солей кальция и магния: Ca(НСО 3 ) 2 , Мg(НСО 3 ) 2 , (МgСО 3).

Н екарбонатная жесткость воды (Ж НК) обусловлена присутствием в воде сульфатов и хлоридов солей кальция и магния: СаSO 4 , MgSO 4 , СаС1 2 , MgС1 2 . Некарбонатная жесткость – часть общей жесткости, равная разности между общей и карбонатной жесткостью:

Жнк = Жо – Жк

По величине жесткости природную воду делят на: очень мягкую - до 1,5 ммоль/дм 3 ; мягкую - от 1,5 до 4 ммоль/дм 3 ; средней жесткости - от 4 до 8 ммоль/дм 3 ; жесткую - от 8 до 12 ммоль/дм 3 ; очень жесткую - свыше 12 ммоль/дм 3 .

В зависимости от конкретных требований производства допускаемая жесткость воды может быть различной. Жесткость воды хозяйственно-питьевых водопроводов не должна превышать 7 ммоль/дм 3 (мг-экв/дм 3).

4.2. Пример решения индивидуального задания

Пример.

Дано:

m (Са 2+) = 80 г = 80 000 мг

m (Mg 2+) = 55 г = 55 000 мг

m (HCO 3 -) = 415 г = 415 000 мг

V(Н 2 О) = 1 м 3 = 1000 дм 3

Жо -? Жк - ? Жнк - ?

Решение

1). Жесткость общую рассчитывают по формуле:

Жо =[Са 2+ ] + = +
; мг – экв/дм 3

где: [Са 2+ ], – концентрация ионов в мг-экв/дм 3 ;

m (Са 2+), m (Mg 2+) – содержание ионов Са 2+ и Mg 2+ в мг;

V(Н 2 О) – объем воды, дм 3 ;

Э (Са 2+), Э (Mg 2+) – эквивалентная масса ионов Са 2+ и Mg 2+ , которая равна:

Э (Са 2+ ) =

Э(Mg 2+ ) =

Жо = [Са 2+ ] + =
=3,99 + 4,52 = 8,5 мг-экв/дм 3

2). Рассчитываем жесткость карбонатную (Жк) по формуле:

Жк = [НСО 3 - ] =

где: [НСО 3 - ] - концентрация в мг-экв/дм 3 ;m (НСО 3 -) – содержание иона НСО 3 - в мг; V(Н 2 О) – объем воды, дм 3 ; Э (НСО 3 -) – эквивалентная масса иона НСО 3 - , которая равна:

Э (НСО 3 - ) =

Жк = [НСО 3 - ] =

3). Рассчитываем жесткость некарбонатную (Жнк), как разность между жесткостью общей и карбонатной:

Жнк = Жо – Жк = 8,5 – 6,8 = 1,7 мг-экв/дм 3

4). Результаты расчетов приведены в табл. 4.6.

Таблица 4.6

Показатели жесткости исследуемой воды

Наименование

показателя:

мг-экв/дм 3

мг/дм 3

3,99 20,04 = 80

4,52 12,16 = 55

Жесткость общая, Жо

Жесткость карбонатная, Жк

Жесткость некарбонатная, Жнк

Различают общую, карбонатную, постоянную и устранимую жесткость.

Общая жесткость - это природное свойство воды, обусловленное наличием так называемых солей жесткости, т.е. всех солей кальция и магния в сырой воде (сульфатов, хлоридов, карбонатов, гидрокарбонатов и др.).

Карбонатная жесткость - это жесткость, обусловленная присутствием гидрокарбонатов и карбонатов Са+ и Mg+, растворенных в сырой воде.

Устранимая, или гидрокарбонатная, жесткость - это жесткость, которую удается устранить при кипячении воды. Она обусловлена гидрокарбонатами Са+ и Mg+, которые во время кипячения воды превращаются в нерастворимые карбонаты, и выпадают в осадок:

Са(НС03)2 = СаС034- + Н2 0 + C 02 î .

Mg(HC03)2 = MgC034- + Н20 + С02Т.

Под постоянной жесткостью понимают жесткость кипяченой воды в течение 1 ч, которая обусловлена наличием хлоридов и сульфатов Са2+ и Mg2+, не выпадающих в осадок.

Сегодня общую жесткость воды выражают в единицах СИ - мг-экв/л. В прошлом пользовались градусами жесткости или "немецкими" градусами (°Н). Было принято, что 1 °Н жесткости отвечает 10 мг СаО в 1 л воды.

Вода с общей жесткостью до 3,5 мг-экв/л (10°) считается мягкой, от 3,5 до 7 мг-экв/л (10-20°) - умеренно жесткой, от 7 до 10 мг-экв/л (20-28°) - жесткой и свыше 10 мг-экв/л (28°) - очень жесткой.

Впервые норматив общей жесткости воды был предложен в 1874 г. в Германии в качестве средней величины жесткости воды водоемов Саксон-Веймарского герцогства. Этот норматив составлял 18-20°, или приблизительно 7 мг-экв/л. Такую же величину рекомендовал и Ф.Ф. Эрисман в 1898 г. Вскоре, принимая во внимание разные местные условия, для некоторых регионов были предложены другие нормативы.

Обосновывая норматив общей жесткости питьевой водопроводной воды, прежде всего необходимо учитывать ее влияние на органолептические свойства. Известно, что значительное содержание солей жесткости, особенно магния сульфата, придает воде горький вкус. Потребители ощущают этот вкус, если общая жесткость воды превышает 7 мг-экв/л. При этом они отказываются от употребления такой воды и изыскивают альтернативные источники водоснаб- жения, вода которых может оказаться небезопасной в эпидемиологическом или токсикологическом отношении.

Чтобы вода не имела горького вкуса интенсивностью выше 2 баллов, ее общая жесткость не должна превышать 7 мг-экв/л. Иначе говоря, доброкачественная вода должна быть мягкой (с общей жесткостью до 3,5 мг-экв/л) или умеренно жесткой (от 3,5 до 7 мг-экв/л). То есть верхний предел общей жесткости питьевой воды - 7 мг-экв/л - установлен на основании ее влияния на орга-нолептические свойства.

Со временем было доказано, что в зависимости от жесткости вода по-разному влияет на здоровье людей. Резкий переход при пользовании от мягкой воды к жесткой, а иногда и наоборот, может вызвать у людей диспепсию, обусловленную прежде всего наличием в воде магния сульфата. В районах с жарким климатом пользование водой с высокой жесткостью приводит к ухудшению течения мочекаменной болезни. Теория об этиологической роли жесткости воды в развитии этого заболевания дала возможность урологам выделить так называемые каменные зоны - территории, на которых уролитиаз можно считать эндемическим заболеванием. Питьевая вода, которой пользуются жители этих зон, характеризуется повышенной жесткостью. Опыты на животных подтвердили, что электролиты, обусловливающие жесткость воды, могут быть одними из этиологических факторов развития уролитиаза.

Соли жесткости нарушают всасывание жиров вследствие их омыления и образования в кишечнике нерастворимых кальциево-магниевых мыл. При этом ограничивается поступление в организм человека эссенциальных веществ - полиненасыщенных жирных кислот, жирорастворимых витаминов, некоторых микроэлементов. В частности, вода с жесткостью свыше 10 мг-экв/л в регионах, эндемичных в отношении гипомикроэлементоза йода (организм человека нуждается как минимум в 120 мкг йода в сутки, оптимально -200 мкг), повышает риск заболевания эндемическим зобом.

Вода с высокой жесткостью способствует развитию дерматита. Механизм этого явления состоит в омылении солями жесткости жиров с образованием нерастворимых в воде кальциево-магниевых мыл, обладающих раздражающим действием.

К тому же надо учитывать, что с повышением жесткости воды усложняется кулинарная обработка пищевых продуктов, а именно: хуже развариваются мясо и бобовые, плохо заваривается чай, образуется накипь на стенках посуды. Кроме того, повышаются расходы мыла, волосы после мытья становятся жесткими, кожа грубеет, ткани желтеют, теряют мягкость, упругость из-за импрегнации кальциево-магниевых мыл.

Однако и очень мягкая вода может отрицательно влиять на организм вследствие уменьшения поступления прежде всего кальция. Известно, что кальций выполняет в организме множество функций, в том числе пластическую: он крайне необходим для остеогенеза и репарации костей (в костях содержится 99% кальция), принимает участие в образовании дентина. Кальций необходим для поддержания нервно-мышечного возбуждения, участвует в процессах свертывания крови, влияет на проницаемость биологических мембран. Суточная потребность взрослого человека в кальции колеблется от 800 до 1100 мг (от 1000 мг/сут в возрасте до 7 лет и почти 1400 мг - в возрасте 14-18 лет). Во время беременности потребность в нем повышается до 1500 мг/сут, во время грудного вскармливания - до 1800-2000 мг/сут.

Потребность человека в кальции удовлетворяется главным образом за счет молока и молочных продуктов. С водой средней жесткости (3,5-7 мг-экв/л, или 10-20°) кальций поступает в организм в количестве, равном приблизительно 15-25% физиологической суточной потребности. Дефицит кальция в организме развивается очень быстро, поскольку выведение его является постоянным и не зависит от поступления. Поэтому длительное пользование мягкой водой, обедненной кальцием, может привести к дефициту его в организме. Установлено, что у детей, которые проживают в районах с мягкой водой (до 3,5 мг-экв/л), на зубной эмали образуются лиловые пятна, которые являются следствием декальцинации дентина. Считают, что уровская болезнь (болезнь Кашина - Бека), которая является эндемическим полигипермикроэлементо-зом стронция, железа, марганца, цинка, фтора, возникает в местностях с низким содержанием кальция в питьевой воде.

В последние годы сформировалась теория, согласно которой вода с низким содержанием электролитов, обусловливающих жесткость, способствует развитию сердечно-сосудистых заболеваний. По результатам эпидемиологических исследований была выявлена статистически значимая, хотя и не очень сильная, обратная корреляционная связь между степенью жесткости питьевой воды и уровнем смертности населения от сердечно-сосудистых заболеваний. Однако многокомпонентность водного фактора не дает оснований считать, что смертность вследствие сердечно-сосудистых заболеваний повысилась лишь за счет меньшей жесткости питьевой воды, и окончательно признать наличие корреляционной зависимости. Существенно, что в исследованиях были недостаточно учтены социально-гигиенические факторы, которые, безусловно, являются ведущими в развитии сердечно-сосудистой патологии. Результаты ряда исследований также свидетельствуют о том, что каждый элемент, содержащийся в питьевой воде, проявляет физиологическое действие не сам по себе, а в сочетании с другими. Изучение особенностей сочетанного действия компонентов питьевой воды, физиологических и патофизиологических механизмов ее проявления - новая страница в изучении гигиены воды.

Таким образом, оптимальной является вода средней жесткости, т.е. в пределах 3,5-7 мг-экв/л (10-20°). Жесткая (7-10 мг-экв/л) и очень жесткая (свыше 10 мг-экв/л) вода неприятна на вкус, ее употребление приводит к негативным изменениям в состоянии здоровья. Поэтому доброкачественная питьевая вода должна иметь жесткость, не превышающую 7 мг-экв/л.

Хлориды и сульфаты. Хлориды и сульфаты распространены в природе в виде солей натрия, калия, кальция, магния и других металлов. Они составляют большую часть сухого остатка пресных вод. Наличие хлоридов и сульфатов в воде водоемов может быть обусловлено природными процессами вымывания их из почвы, а также загрязнением водоема различными сточными водами.

Природное содержание хлоридов и сульфатов в воде поверхностных водоемов незначительно и в большинстве случаев колеблется в пределах нескольких десятков миллиграммов на литр. Природное содержание хлоридов в воде в зависимости от условий формирования водоема может быть разным: от десятков до сотен (в условиях солончаковых почв) миллиграммов на литр. В проточных водоемах содержание хлоридов обычно невелико - до 20-30 мг/л. Незагрязненные грунтовые воды в местностях с не солончаковой почвой обычно содержат до 30-50 мг/л хлоридов. В водах, фильтрующихся через солончаковую почву или осадочные породы, может содержаться сотни и даже тысячи миллиграммов хлоридов в 1 л, хотя вода может быть безукоризненной в эпидемиологическом отношении. Поэтому, используя хлориды как показатель эпидемиологической безопасности, необходимо учитывать местные условия формирования качества воды.

Повышение внимания к норме жёсткости питьевой воды связано с повсеместным распространением стиральных и посудомоечных машин, поскольку определение расчётной загрузки моющих средств и частота очистки машин зависит от фактической степени жёсткости. Однако единицы измерения этого показателя в разных странах отличаются, а, кроме того, отличаются и составляющие для каждой из специфических единиц измерения.

Что такое жёсткая вода и что на неё влияет?

Степень жёсткости воды определяется как совокупность свойств, зависящих от содержания магния, кальция и других растворённых солей. Общий показатель складывается из постоянной и временной составляющей:

  • Временная (карбонатная) устраняется кипячением благодаря способности ряда солей выпадать в осадок с образованием накипи. Характеризуется наличием бикарбонатов магния и кальция – при рН>8.3.
  • Постоянная (некарбонатная) сохраняется при кипячении. Характеризуется наличием солей магния и кальция хлоридных, сульфатных и нитратных анионов.

На величину жёсткости влияют следующие факторы:

  • интенсивность растворения гидропотоками горных пород (известняков, доломитов),
  • использование подземных или поверхностных вод (поверхностные при прочих равных более «мягкие»),
  • сезонные колебания для поверхностных ресурсов (показатель максимальной «мягкости» отмечается в периоды паводков и половодий с активным поступлением дождевых и талых «пополнений» в источники водоснабжения, а минимальная «мягкость» приходится на зимний период).

Единицы измерения, формулы и расчёты

В России единица измерения содержания солей по данному параметру называется «градус жёсткости» (°Ж), который с помощью распространённых онлайн-калькуляторов пересчитывается в единицы измерения, принятые в других странах (см. таблицу).

Так 1°Ж = 2,8°DH = 3,51°Clark = 5°F = 50,04ppm.

Каждая величина соответствует следующим показателям для воды:

  • 1°Ж = 20,04 мг Ca 2 + или 12,15 Mg 2 + в 1 дм 3
  • 1°DH = 10 мг CaO в 1 дм 3
  • 1°Clark = 10 мг CaCO 3 в 0,7 дм 3
  • 1°F = 10 мг CaCO 3 в 1 дм 3
  • 1 ppm = 1 мг CaCO 3 в 1 дм 3

1°Ж = 1 мг-экв/л (чаще используют в практике) = 1/2 моль/м3 = 20,04 миллиграмма ионов Ca 2+ (или 12,16 миллиграмма ионов Mg 2+)

Формула расчёта жёсткости воды при карбонатном типе:

  • Ca 2+ + 2HCO 3 - (при нагревании)= CaCO 3 ↓ + H 2 O + CO 2
  • Mg 2+ + 2HCO 3 - (при нагревании)= Mg CO 3 ↓ + H 2 O + CO 2

Общая °Ж определяется как сумма временной и постоянной: H общ = Н карб + Н некарб

Нормативные требования

  • Российские нормативы – СанПиН-ы 2.1.4.1074-01; ГН 2.1.5.1315-03 – определяют норму жёсткости питьевой воды в пределах 7°Ж с установлением нормативного значения для магния – в пределах 50 мг/л и не регламентируя его для кальция.
  • Для бутилированного продукта, по СанПиН-ам 2.1.4.1116-02: °Ж находится в интервале 1,5-7 с показателями 25-130 мг/л/кальций, 5-65 мг/л/магний.
  • Рекомендации ВОЗ для питьевой воды °Ж не регламентируют, определяя при этом норму 20-80 мг/л/кальций, 10-30 мг/л/магний, что ниже российских нормативных значений, однако фактические значения при водообеспечении, например, для Москвы, укладываются в рекомендации ВОЗ.

По данным московского водоканала, для Москвы (по сравнению с остальными крупными городами мира), характерны следующие показатели (см. таблицу):

  • до 2°Ж – мягкая,
  • в интервале 2-10°Ж – средне-жёсткая,
  • свыше 10°Ж – жёсткая.

В некоторых случаях эта шкала детализируется, нередко со смещением, однако для конкретных ситуаций лучше применять не описательные, а точные значения градусов. Так жёсткость воды в аквариуме в норме составляет 3-15°Ж с разделением предпочитаемых интервалов для каждого вида рыб, моллюсков, водорослей. Например, раковина улиток остаётся в лучшем состоянии в жёсткой воде, а для живородящих рыб предпочтителен диапазон в 6-10°Ж. При этом следует учитывать, что содержание кальция в водной среде будет постепенно снижаться за счёт усвоения его обитателями аквариума.

В домашних условиях, помимо кипячения, применяют следующие способы смягчения:

  • Реагентный – основан на добавлении кальцинированной соды или гашеной извести с выпадением в осадок нерастворимых соединений солей магния и кальция. Одним из самых эффективных реагентов считается ортофосфат натрия, способный снизить градус до 0,05°Ж.
  • Мембранный – благодаря нанофильтрации и обратному осмосу полупронецаемой мембраны задерживаются ионы.
  • Магнитный – благодаря магнитогидродинамическому резонансу карбонат кальция не кристаллизуется, а модифицируется в арагонит, который не откладывается на теплообменных поверхностях.

При этом различного типа аэраторные насадки на кран и экономители с поворотным механизмом (http://water-save.com/ ) благодаря постоянному механическому сдвигу шарниров в незначительной мере могут повлиять на образование накипи, однако ни остановить её образование, ни снизить значение °Ж не способны.

Здравствуйте, сегодня речь пойдет о жесткости воды измеряемой с помощью TDS метра или солемера. Данный прибор уже неоднократно обозревался на сайте, но так как я проживаю в предгорьях Кавказа, была мысль пойти с этим прибором в поход и померить жесткость воды в горной реке, горном ручье, лесном роднике. Поэтому я иду в реальный поход а вас приглашаю в виртуальный. Ну и померяю дождевую, магазинную минеральную, бутелированную не минеральную и водопроводную воду. Интересно? Тогда читаем далее.

Жёсткость воды - совокупность химических и физических свойств воды, связанных с содержанием в ней растворённых солей щёлочноземельных металлов, главным образом, кальция и магния (так называемых «солей жёсткости»).(wikipedia)

Вот поэтому этот прибор так же называют солемером. TDS расшифровывается и переводится как Total Dissolved Solids - общее содержание растворенных твердых веществ.
Жесткость воды это как раз то что отвечает за накипь в чайнике и камни в почках.
Пробежимся немного по самому прибору.
Спереди находятся кнопка включения/выключения, кнопка фиксации показаний и дисплей для вывода показаний.


В низу под колпачком два электрода которые и опускаются в воду


На тыльной стороне находится клипса и калибровочный винт

В колпачке с верху встроен батарейный отсек на две батарейки типа LR44

Замер делается так: Включаем прибор, он показывает 000, опускаем электроды в воду и смотрим значение.
Индикация трехсегментная, если значение больше 999 то внизу появляется знак х10.
Прибор измеряет в американских единицах измерения ppm, у нас в России принята единица миллиграмм-эквивалент на литр, мг-экв/л.
1 мг-экв/л=50,05 ppm
Согласно Санитарным нормам и правилам за номером СанПиН 2.1.4.1074-01
максимально допустимая концентрация равна 7 мг-экв/л. или 350ppm
на это значение и будем опираться, так же приведу еще вот такую таблицу ей тоже можно верить


Данный прибор калибруется, специальной калибровочной жидкостью в которой значение содержания солей известно заранее, этот прибор уже откалиброван продавцом.
Температура воды при измерениях особой роли не играет так как в характеристиках прибора заявлено такое свойство:

Auto temperature compensation

Для начала проведем комнатно стаканные замеры
Питьевая водопроводная вода из крана

Она же кипяченная, как видно немного меньше содержание солей, кипячение смягчает воду.

Дождевая вода, просто вышел на балкон и набрал сбегающую с крыши воду во время дождя.

Бутелированная вода из кулера, заявлено что талая, ледниковая, производителя специально не показываю.


газированная минеральная вода из магазина, почему такие показания не знаю эта вода добывается из скважины, она обогащена всякими элементами может быть по этому.


Ну а теперь в поход, первая у нас горная река

вот так выглядит




Вот такие показания

В процессе замеров пару раз закинул удочку, в надежде поймать форель, неповезло.

Зато попалась вот такая плотвичка.

Следующий это родник в лесу. У нас считается что в этом роднике очень чистая вода, много местных набирают эту воду для питья, и готовят только из нее. Даже ходит байка что кто то отвозил воду из него в какой то научно исследовательский институт, там сделали анализ и сказали что вода уникальная, может мертвого поднять, лично я не верю.
Меня отвлекли, поэтому сфотографировать забыл, показания были 60 ppm, в низу в видео этот родник есть.
Что характерно почти такие же как в реке в которой раннее замерил, река от родника протекает примерно в полукилометре, у меня есть подозрения что это одна и та же вода, только за счет фильтрации через почву, в роднике она выглядит кристально чистой.
Следующее на очереди место, это небольшой горный ручей с маленьким 2-х метровым водопадом.

Вот такие виды по пути к водопаду



А вот и сам водопад

Измерения


внизу брызги, вода разлетается во все стороны, поэтому замеры было делать не удобно и тем не менее померил и результат сильно удивил, на фото не получилось нормально снять но в итоге результат был за 1000 ppm, внизу с лева мигала надпись x10. Почему такие высокие показания в этом ручье я не знаю, выше он вытекает из пещеры возможно по этому.

В заключение скажу, что прибор в основном в быту необходим владельцам фильтрующих систем, что бы определять когда необходимо менять фильтрующий элемент.

Видео похода по водоемам на моем youtube канале, кому интересно обязательно подписывайтесь.


Так же видео распаковки.


До свидания. Планирую купить +65 Добавить в избранное Обзор понравился +55 +109

Похожие публикации