Строительный портал - DomNaneve

Размножение растений в пробирках ин-витро (in-vitro), укоренение, адаптация, время, раствор. Размножение растений in vitro Растения инвитро

Что мы делаем, если хотим посадить на своем участке то или иное растение? Обычно мы покупаем семена или готовую рассаду для выращивания трав и овощей, саженцы – для посадки кустарников и деревьев, рассаду или луковицы – для выращивания цветов. Часто ли мы задумываемся над тем, каким образом получена рассада? Оказывается, помимо традиционных черенкования, прививок, выращивания из семян, размножения корневищами, луковицами и т.д. в большинстве стран рассаду многих растений сегодня получают путем микроклонального размножения. Особенно широко этот способ применяется для выращивания растений, которые плохо поддаются размножению другими способами. Также этот метод незаменим, если необходимо постоянно получать в достаточно короткие сроки значительное количество качественной рассады.

С помощью микроклонального размножения (другое название метода – меристемное размножение) выращивают декоративные и плодово-ягодные растения, комнатные и срезочные цветы, картофель и прочие овощи.

Микроклональное размножение растений широко применяется в США, Голландии, Польше, Франции, Японии, Таиланде. В России также накоплен большой опыт по меристемному размножению важных для сельского хозяйства видов растений. Практически во всех российских научно-исследовательских институтах и селекционных центрах созданы лаборатории для микроклонального размножения и оздоровления селекционного материала. Относительно недавно меристемные технологии начали применяться крупными питомниками растений и сельхозпредприятиями. В России наиболее широкое применение меристемная технология пока нашла в получении здоровых семян картофеля.

О методе

Меристема (от греч. meristos - делимый) - это ткань растений, в течение всей жизни сохраняющая способность к образованию новых клеток. Именно за счет меристемы растения растут, образуют новые листья, стебли, корни, цветки.

В процессе роста меристемная ткань в определенной степени сохраняется в некоторых частях растения: в узлах побега, в почках, в кончиках корней, в основаниях черешков листьев или цветоносах и т.д.

Преимущества растений, полученных микроклональным размножением:

  1. Такие растения более здоровые. Они не поражаются вирусами, даже если меристемные ткани были взяты у зараженного растения, так как вирус не поражает меристемы на верхушках побегов.
  2. Урожайность меристемных саженцев выше. Например, с обычного кустика клубники можно собрать 200–300 г ягод, а с меристемного – до 1 кг.
  3. Микроклональное размножение дает возможность получения огромного количества однородных растений за время, при котором не даст того же результата не один другой метод.
  4. Меристемное размножение становится единственно возможным в больших промышленных масштабах, если для размножения берутся растения, которые стерильны и не дают семенного потомства.

Меристемным методом растения размножают в 4 этапа:

  1. Введение: меристемные ткани отделяют от нужного экземпляра растения и помещают на специальные питательные среды в пробирки. Затем меристемные растения выдерживают в специальном шкафу в течение 20-40 дней при освещении до 14 ч. в сутки.
  2. Размножение: через 1-1,5 месяца микрочеренки уже имеют размер горошины, у них образовались зачатки всех вегетативных органов растений. Подрощенные микрочеренки делят на пять-семь частей, а «кусочки» (вновь полученные меристемные черенки) снова проращивают в пробирках в течение 20-30 дней.
  3. Укоренение и адаптация: когда меристемные микрочеренки образуют достаточную корневую систему, их извлекают из пробирок и пересаживают в горшочки, заполненные легким торфом. Затем горшочки устанавливают в защищенную среду - достаточно использовать небольшую пластиковую трубку. Через 4-6 недель микрочеренки привыкают к естественным условиям выращивания.
  4. Подращивание: после укоренения и адаптации новые растения выращиваются при агротехнике, свойственной данной культуре, и могут быть высажены в теплицу, а затем и в открытый грунт.

М.: Индрик, 2014.

Сборник подготовлен к юбилею доктора исторических наук Ирины Геннадиевны Коноваловой, зам. директора, главного научного сотрудника, зав. Отделом специальных исторических дисциплин и зав. Центром исторической географии Института всеобщей истории РАН, крупнейшего в нашей стране востоковеда, автора большого числа исследований и публикаций источников, выдающегося специалиста в области исторической географии, ответственного редактора недавно организованного ею альманаха "Историческая география". В сборник вошли статьи ее коллег и друзей, написанные по следующим направлениям: историческая география, гуманитарная и культурная география, история географии и картографии.

Для историков, географов, филологов.

Под науч. редакцией: В. Белик, Г. Джамирзоев Т. 1. Махачкала: АЛЕФ, 2011.

В сборник Трудов МОО включены избранные материалы XIII Международной орнитологической конференции Северной Евразии, состоявшейся в г. Оренбурге 30 апреля - 6 мая 2010 г. Тематика статей касается истории Мензбировского орнитологического общества и палеоорнитологии, общих проблем орнитологии, фауны и систематики птиц, их экологии и эволюции, а также вопросов охраны редких видов. Среди информационных материалов публикуется Резолюция XIII Орнитологической конференции Северной Евразии

М.: МИЭМ НИУ ВШЭ, 2016.

В материалах конференции студентов, аспирантов и молодых специалистов представлены тезисы докладов по следующим направлениям: математика и компьютерное моделирование; информационно-коммуникационные технологии; автоматизация проектирования, банки данных и знаний, интеллектуальные системы; компьютерные образовательные продукты; информационная безопасность; электроника и приборостроение; производственные технологии, нанотехнологии и новые материалы; информационные технологии в экономике, бизнесе и инновационной деятельности; инновационные технологии в дизайне. Материалы конференции могут быть полезны для преподавателей, студентов, научных сотрудников и специалистов, специализирующихся в области прикладной математики, информационно-коммуникационных технологий и электроники.

Korsakov I. N. , Kuptsov S. M. , Raznometov D. A. et al. Egyptian Computer Science Journal. 2013. Vol. 37. No. 7. P. 51-61.

This prototype development explains the challenges encountered during the ISO/IEEE 11073 standard implementation process. The complexity of the standard and the consequent heavy requirements, which have not encouraged software engineers to adopt the standard. The developing complexity evaluation drives us to propose two possible implementation strategies that cover almost all possible use cases and eases handling the standard by non-expert users. The first one is focused on medical devices (MD) and proposes a low-memory and low-processor usage technique. It is based on message patterns that allow simple functions to generate ISO/IEEE 11073 messages and to process them easily. MD act as X73 agent. Second one is focused on more powerful device X73 manager, which do not have the MDs" memory and processor usage constraints. The protocol between Agent and Manager is point-to-point and we can distribute the functionality between devices.

Developed both implementation X73 Agent and Manager will cut developing time for applications based on ISO/EEE 11073.

Ястребов Г. А. , Красилова А. Н. , Черепанова Е. С. Научные доклады Лаборатории сравнительного анализа развития постсоциалистических обществ. WP17. Высшая школа экономики, 2011. № WP17/2011/02 (ч. 2).

Hyafil A., Fontolan L., Kabdebon C. et al. eLife. 2015. No. 4. P. 1-45.

Many environmental stimuli present a quasi-rhythmic structure at different timescales that the brain needs to decompose and integrate. Cortical oscillations have been proposed as instruments of sensory de-multiplexing, i.e., the parallel processing of different frequency streams in sensory signals. Yet their causal role in such a process has never been demonstrated. Here, we used a neural microcircuit model to address whether coupled theta-gamma oscillations, as observed in human auditory cortex, could underpin the multiscale sensory analysis of speech. We show that, in continuous speech, theta oscillations can flexibly track the syllabic rhythm and temporally organize the phoneme-level response of gamma neurons into a code that enables syllable identification. The tracking of slow speech fluctuations by theta oscillations, and its coupling to gamma-spiking activity both appeared as critical features for accurate speech encoding. These results demonstrate that cortical oscillations can be a key instrument of speech de-multiplexing, parsing, and encoding.

В условиях происходящей биотехнологической революции, появления инновационных методов лечения, роста общей продолжительности жизни, изменения требований общества к результативности мер по охране здоровья неизбежно происходит увеличение потребности в расходах системы общественного здравоохранения. В этой связи крайне важно иметь инструмент оценки социально-экономической эффективности того или иного решения с учетом отдаленных последствий. Целью пилотного исследования было создание методологически обоснованной экономической базы для принятия решения о целесообразности выделения дополнительных ресурсов российской системы здравоохранения на эффективные с макроэкономической точки зрения технологий. В качестве демонстрационного примера использовалась оценка целесообразности внедрения технологий ранней диагностики и лечения двух заболеваний костно-мышечной системы. Результаты исследования продемонстрировали, что внедрение в практическое здравоохранение России модели раннего лечения артрита является экономически эффективной и целесообразной мерой. Вложения, многократно превосходящие фактически сложившиеся расходы на его лечение, могут быть оправданы с макроэкономической точки зрения, принося дополнительные выгоды государству за счет снижения производственных потерь, обусловленных снижением уровня инвалидизации и восстановлением трудового потенциала.

Ястребов Г. А. , Красилова А. Н. , Черепанова Е. С. Научные доклады Лаборатории сравнительного анализа развития постсоциалистических обществ. WP17. Высшая школа экономики, 2011. № WP17/2011/02 (ч. 1).

Предложенный вниманию читателя материал открывает серию публикаций, целью которой является знакомство с результатами проекта «Сравнительный анализ развития человеческого потенциала в постсоциалистических странах Европы», осуществляемого Лабораторией сравнительного анализа развития постсоциалистических обществ НИУ ВШЭ. В работе, в частности, сформулированы основные теоретико-методологические посылки анализа постсоциалистических трансформаций с точки зрения обеспечения жизнеспособности обществ, под которой на операциональном уровне рассматривается степень реализации потребностей населения в безопасности, образовании, здоровье, самореализации, демографическом и социальном воспроизводстве. При этом, учитывая ограниченность существующих оценок на базе таких общепринятых интегральных показателей, как Индекс человеческого развития ООН, авторы разрабатывают собственное определение жизнеспособности на основе классического определения «здоровья», предложенного Всемирной организацией здравоохранения в 1948 г. Значительную часть работы занимает обсуждение собранной из различных источников (ВОЗ, Всемирный банк, ПРООН и т.п.) эмпирической информации о качестве человеческого развития в ряде стран Европы и СНГ.

В спектре внутренней медицины гастроэнтерология является одной из наименее освещенных научными доказательствами областей. Это не означет, однако, что еe практика не может быть усовершенствована последовательным использованием подходов доказательной медицины

Атлас содержит 8 карт, графики и таблицы, иллюстрирующие основные закономерности и ограничения в области утилизации твердых бытовых отходов в Центральном Федеральном округе. Социальная значимость Атласа состоит в выявлении и типологизации основных "ядер" антропогенного загрязнения, представленных полигонами и свалками ТБО.

Создание атласа осуществлялось при финансовой поддержке Русского Географического общества (грант РГО №59-2013/Н7 "Экологические риски в пригородных и межселенных территориях")

В препринте анализируются некоторые элементы и показатели электронного правительства в различных странах за 2009—2010 годы, и их взаимосвязь с коррупцией в государственном секторе. Широко признан тот факт, что коррупция является нежелательным явлением. При этом продолжаются дискуссии о том, какие из факторов, ее определяющих, наиболее значимы. Авторы исследуют возможную причинно-следственную зависимость установленной взаимосвязи между электронным правительством и коррупцией в государственном секторе. При помощи эконометрического анализа крупных страновых выборок, авторы проверили тесноту связи между индикаторами электронного правительства и показателями Индекса развития ИКТ, такими как качество онлайн-услуг и использование ИКТ, с одной стороны, и уровень восприятия коррупции, с другой стороны. Были проанализированы основные научные публикации, международные рейтинги и базы данных международных организаций. По результатам проведенного исследования предлагаются рекомендации по преодолению слабых сторон международных сопоставительных исследований электронного правительства, а также возможные направления дальнейших исследований в выделенной области.

В статье рассматриваются основы построения моделей измерительных приемников, предназначенных для виртуальных исследований в области ЭМС, в формах, отличных от схемной. Анализируются модели на основе цифровой обработки сигналов, формальные математические модели, а также базирующиеся на графическом программировании. Формулируется общий вывод о перспективах использования таких моделей при построении системы автоматизированного проектирования, реализующей процедуру виртуальной сертификации радиоэлектронных средств по эмиссии излучаемых радиопомех.

В работе была предложена схемная модель отдельных узлов фликерметра. Эту модель можно использовать для оценки уровня фликера в электросетях при виртуальных исследованиях кондуктивных помех, которые являются составляющей общей теории виртуальной сертификации. В будущем на основе этой модели могут быть разработаны инженерные методики, нацеленные на решение практических задач в области ЭМС с широким привлечением средств автоматизации и моделирования.

Разделение вклада в публикацию, написанную в соавторстве, является фундаментальной проблемой библиометрии. Её решение создает основу для последующих исследований. Существуют два решения не требующие никакой дополнительной информации: индекс равного разделение соавторства и индекса Шепли. До настоящего времени индекс Шепли не использовался из-за сложности вычисления. В данной работе показана эквивалентность двух индексов для специально построенных кооперативных игр.

Кн. 2: Разработка моделей надёжности для проектных исследований надёжности радиоэлектронной аппаратуры. М.: МИЭМ, 2010.

Излагаются результаты разработки моделей надёжности для проектных исследований надёжности радиоэлектронной аппаратуры, полученные в ходе выполнения II этапа научно-исследовательской работы « Разработка методов и средств для проектных исследований надёжности радиоэлектронной аппаратуры » выполняемой в рамках тематического плана МИЭМ по теме № 100077 : « Разработка моделей надёжности для проектных исследований надёжности радиоэлектронной аппаратуры » .

Приводятся результаты разработки унифицированных топологических моделей надёжности резервированных групп. Описываются формальные модели типовых групп для нагруженного резервирования, для ненагруженного резервирования, для комбинированного контроля работоспособности, для групп с переключателями и групп с восстановлением. Проанализированы способы реализации γ-процентного контроля работоспособности РЭА и СЧ и даны рекомендации по модификации алгоритмов формирования временных диаграмм состояний типовых резервированных групп для различных способов контроля. Предложены методы формирования временных диаграмм состояний для восстанавливаемых резервированных групп для «последовательного» и «параллельного» соединения компонентов. Приводятся результаты экспериментальной проверки разработанных моделей и методов для проектных исследований надёжности РЭА.

Gokhberg L. , Fursov K. , Perani G. Working Party of National Experts on Science and Technology Indicators. DSTI/EAS/STP/NESTI. Organisation for Economic Co-operation and Development, 2012. No. DSTI/EAS/STP/NESTI(2012)9/ANN1.

Документ содержит проект методологических рекомендаций по статистическому измерению технологий. Он включает предложения по формированию операциональных определений технологий, подходы к идентификации классификации новых и возникающих технологий, а также предложения по разработке системы показателей, характеризующих жизненный цикл технологий, и стратегиям сбора данных. Разработанные рекомендации предлагается использовать в качестве методологической основы гармонизированной системы сбора и интерпретации статистических данных о технологиях. В приложении приводятся сведения о доступных определениях технологий и краткие результаты исследования опыта национальных статистических служб в области статистического наблюдения науки и технологий.

Размножение растений в культурах ин-витро (микроразмножение) означает способ размножения в искусственных, асептических условиях (в стекле). Представления микроразмножения является теория заложенная, когда каждая клетка растения покрытосеменных скрывает переданные через ядро и цитоплазму свойства, которые в определенных условиях делает возможным восстановление целого организма, отвечающему целому материнскому растению. Размножение ин-витро растений садовых, древесных, проходит примерно как растений зеленых, однако достижение свойств размножение является более сложным. В процессе розмнажения можно выделить четыре этапа.

Этап первый и второй. Оздоровление и размножение.

Материалом для размножения, используются растения свободные от болезней, зачастую с помощью термотерапии, после зимнего отдыха берут верхушечный побег растения. Стерилизацию поверхности проводят с помощью смеси из (50% алкоголя и 0,1% хлорки (хлорид ртути)). Для размножения используют верхушечный побег 0,3-0,8 мм, для смеси чаще всего используют работы Мурашига и Кога, с добавлением цитокинина BAP (бензиламинопурина), стимулятора роста и образователя новых побегов. В первом этапе растения содержаться 3-4 недели, создаются несколько дополнительных побегов. Состав Мурашига и Кога таков: (в мг/л)

Субтракция пробуждает рост и образование боковых побегов. Для получения хороших приростов размножения нужно использовать хорошие термично-освещенные условия. Интенсивность осветления должна быть около 1000 люксов (1000 люмий на квадратный метр), а температура воздуха от 21 до 25 градусов Цельсия . Температура выше 30 гр приводит к быстому старению материала и уменьшению продуктивности.

Этап второй. Укоренение.

Для укоренения в пробирках используют молодое растения с хорошо образовавшимися листьями, длиной около 2 см. Для укоренения используют стимуляторы корнеобразования на основе ауксина.

Типы использования различных ауксинов (NAA, IAA или IBA) считается самым лучшим раствором с содержанием от 0,5 до 2 мг на литр раствора. Перебор укоренителя вызывает образование калиуса и затруднение образование корней. Хорошему укоренению растений способствует интенсивность света и уменьшение минеральных солей, добавление витаминов, B1, B2, B6, кислоты никотиновой и аскорбиновой.

Этап четвертый. Адаптация растений из пробирки в теплицу.

Размножение растений в ин-витро, есть в практике несколько десятков лет. Большое значение в этом способе является быстрое размножение растений за короткое время, а также выращивание их без вирусов. С одной почки растения можно вырастить несколько тысяч растений.

Для того чтобы получить копию растения с максимальной похожестью свойств желательно такое растение размножать не генеративно, т.е. семенами, а вегетативно, т.е. частями самого растения. Такими частями могут быть черенки, корневые деленки, подземные и боковые побеги, дочерние луковицы, усы и т.п. Растения, полученные таким способом — генетически идентичны исходному экземпляру. Они называются его клонами, а размножение растений такими способами — называются клонированием этого растения. Клонирование – доступный каждому способ размножения растений, не имеющий отношения к генной инженерии, а полученные таким способом растения не являются ГМО. При клонировании стоит задача получить растение с сохранённым генотипом, а не модифицировать его.

За счёт капиллярности вещества из питательной среды начинают поступать к клеткам меристемы. Клетки начинают делиться и расти и, соответственно, начинает расти наш микроскопический срез меристемы. По мере роста он превращается в миниатюрное растение, которое генетически идентично исходному растению, с верхушечной точки которого брали срез. У растения образуются точка роста, листья, ствол, корень, закладываются почки возобновления.

У учёных-биологов эта процедура называется «введение в культуру in vitro». Это означает, что растение начинает культивироваться (выращиваться при помощи человека) в стеклянной лабораторной посуде в стерильных условиях и искусственном питании. В условиях in vitro растение начинает получать всё необходимое ему для роста и развития из питательной среды. Получая сахара для питания, растение перестаёт нуждаться в их самостоятельном производстве и процессы фотосинтеза сильно замедляются. Замедлению фотосинтеза способствует обеднение воздуха внутри пробирки углекислым газом так как нет его притока кроме продуктов дыхания самого растения. Из-за такого способа питания, на который обречено растение in vitro у самого растения изменяется метаболизм, образуются изменённые и недоразвитые органы. Так 100% относительная влажность и стабильная температура не дают развиться у растения системе термо- и влаго-регуляции. Растения имеют полностью открытые устица на внутренней поверхности листьев, но они не испаряют воду из-за 100% относительной влажности. Растения не производят растительный воск, который должен был бы предохранять их от высыхания и перегрева. Корни вырастают «ленивыми». Они толстые, длинные, на них отсутствуют волосовидные корешки, которые в «обычной» жизни растения выполняют важную функцию всасывания влаги и питательных веществ из почвы.

У растений средней полосы, да и у большинства других, существует чёткая цикличность в развитии. «Дирижёром» этого развития является внешняя среда. Температура, влажность, продолжительность светового дня – все эти факторы «подсказывают» растению в какой части биологического цикла оно находится и к чему нужно готовиться. Механизм влияния прост. При воздействии внешнего фактора в растении вырабатываются определённые химические вещества, которые участвуя в обмене веществ растения, доносят указания «дирижёра» до соответствующих органов растения и запускают соответствующие внутренние биологические процессы. Такие вещества называются растительными гормонами. Растения же содержащиеся в условиях in vitro практически лишены влияния природной среды. Исключение составляет, разве что, только атмосферное давление. Поэтому для управления биологическими циклами и процессами у растений in vitro нашли очень простой способ – гормоны им добавляет в питательную среду сам человек. Получив такую гормональную команду, растение запускает требуемые нам биологические процессы. Так на определённом этапе растению добавляют в питательную среду гормон роста, и оно начинает образовывать боковые побеги. Эти побеги в стерильных условиях аккуратно срезают и помещают опять на питательную среду для укоренения и роста в стерильных условиях in vitro. Такая процедура называется «микрочеренкованием» и отличается от обычного черенкования только стерильными условиями и микроскопическим размером черенков. Следует сказать, что стерильные условия для микрочеренкования обеспечиваются в первую очередь проведением всех манипуляций в ламинарном шкафу.

После укоренения мы имеем первое поколение клонов. Для получения необходимого количества растений на выходе нужно просто провести несколько таких циклов клонирования и после каждого цикла будем получать увеличивающееся с геометрической прогрессией количество растений. Предположим, мы эти шаги проделали нужное число раз и имеем in vitro нужное нам большое количество одинаковых по размеру и генетически тождественных друг другу микроскопических растений.
Теперь перед нами стоит задача вынуть растения из пробирок и приучить их жить и развиваться вне пробирок — в обычных условиях, как говорят биологи — ex vitro. Такая процедура является обратной процедуре введения в культуру in vitro и называется адаптация. В процессе адаптации растение должно:

1. Научиться заново фотосинтезу. Т.е. уметь самостоятельно запасать для себя в нужных количествах энергию света синтезируя полисахара из воды и углекислого газа.
2. Вырастить на корнях волосовидные корешки и через них снабжать себя влагой и растворами солей из почвы.
3. Научиться сужать и вообще закрывать устица для регулирования количества испаряемой влаги с целью регулирования скорости обмена веществ и защиты от перегрева и высыхания.
4. Научиться вырабатывать растительный воск на покровных тканях для защиты от неблагоприятных факторов.
5. Подрасти и укрепиться для последующей акклиматизации.

Адаптация не менее сложный и важный процесс в размножении растений наравне с введение в культуру in vitro. Не все растения могут пройти путь от жизни в пробирке к жизни вне пробирки. Для облегчения растениям этого пути используются специальные установки, позволяющие плавно менять параметры внешней среды и защищать юные растения от быстрого заражения патогенной флорой и фауной.


Растения, прошедшие адаптацию — уникальны по своим свойствам.

Во-первых, они молоды. Биологический возраст растений размноженных in vitro начинает отсчитываться с нуля, в отличие от растений, полученных обыкновенным черенкованием, которые частично наследуют возраст маточного растения. Юные растения быстрее растут и развиваются.

Во-вторых, они абсолютно здоровы, что опять-таки хорошо сказывается на их росте, урожайности и способности хорошо размножаться вегетативно.

В-третьих, они, как говорят садоводы, корнесобственные. Это означает, что все части полученных растений генетически идентичны, что увеличивает их сортовую выживаемость. Это положительное свойство всех черенкованных растений даёт им превосходство над привитыми растениями. Последние в случае утраты надземной части и возобновления роста восстанавливаются как дички, на которые была сделана прививка. Сирень же полученная методом микрочеренкования, даже поросль будет давать сортовую.

В-четвёртых, после размножения растений in vitro укореняемость их черенков при обычном черенковании значительно увеличивается.

Продолжая перечислять положительные стороны размножения растений по технологии микрочеренкования, следует сказать, что эта технология позволяет размножать такие виды и сорта растений, которые не укореняются совсем или крайне плохо укореняются при обычном черенковании. Ещё можно заметить, что сложность и, соответственно, затратность микроклонального размножения вынуждает производителей особо тщательно выбирать сорта для массового размножения. В первую очередь для размножения in vitro отбираются особо качественные, высокодекоративные и урожайные сорта повышенного спроса.
Ввиду сказанного становится понятно, что выращиваемые нами растения по сортности являются супер-суперэлитой в агрономической терминологии. Хотя в картофелеводстве супер-суперэлитой называется семенной картофель, полученный на второй год выращивания в открытом грунте. Наши же растения после адаптации высаживаются в пластиковые контейнеры, заполненные специально подобранной грунтовой смесью на основе торфа. Превосходство технологии in vitro описывают в своей работе ученые из Института биоорганической химии РАН и РГАУ-МСХА имени К.А. Тимирязева. Так приведённая ниже Таблица 1 из их работы, наглядно показывает разницу в коэффициенте размножения растений земляники, полученной in vitro и выращенной обычным способом.

Влияние способа получения маточных растений на выход розеток земляники (посадка в начале марта)
Сорт Количество розеток от растений, полученных in vitro, шт. Количество розеток от растений, полученных через пикеровку, шт.
Конец июня Начало августа Конец июня Начало августа
Ред Гонтлет (Red Gauntlet)
Зенга Зенгана (Senga Sengana)

Выращенные в контейнерах растения можно свободно перевозить и высаживать в грунт в течение всего тёплого периода года. Состав смеси позволяет удерживать влагу продолжительное время. Но даже обильный полив перед дальней перевозкой не повредит нашему растению, так как в состав субстрата входят разрыхляющие и удерживающие воздух компоненты — корни не задохнутся. В состав субстрата также входят комплексные удобрения с микроэлементами длительного периода действия, что позволяет продолжительное время держать растение до посадки в контейнере, обходясь лишь периодическими поливами.


Автор статьи:
Диев А.Б.

Использованная литература.

1. В.Г. Лебедев, А.Б. Азарова, К.А. Шестибратов, В.И. Деменко. Проявление самоклональной изменчивости у микроразмноженных и трансгенных растений // Известия ТСХА. 2012. N1. С. 153-163.

Многих интересует возможность размножения растений in vitro в домашних условиях. Насколько это возможно вы узнаете из этой статьи. Она будет написана на доступном языке, для непосвященных людей.

Для хорошего результата нужно учитывать все правила процедуры. Это увеличивает затраты и выгода будет, только если размножать в достаточно больших количествах.

При размножении путем in vitro посадочный материал выходит достаточно качественный.

Растения лучше адаптируются и бистро развиваются. Имеют сильный иммунитет к заболеваниям.

Начинать клонирование нужно с полной стерилизации как среды, растительного материала, инструментов. Помещение моется дезинфицированными средствами. Желательно чтоб стены были обложены кафелем, что облегчает процедуру. Несколько часов обрабатывается комната кварцевой лампой. Приобретается медицинский комплект в виде халата, шапочки и марлевой повязки. Спецодежда обрабатывается горячим утюгом и кварцуется в той же комнате. Все необходимые инструменты разлаживаются в комнате в момент кварцевания. В обязательном порядке заклеиваются все отверстия, включая вентиляционные. Любая бактерия или микроб попавшая на растение загубит всю операцию.

Вам понадобятся инструмент для разрезания, его лезвие должно быть очень острым и тонким. Чистые емкости и льняные тряпочки, завернутые в фольгу, стерилизуются 1-2 часа при высокой температуре не ниже 200 С, в духовке. Таким же образом стерилизуете дистиллированную воду.

Теперь необходимо обработать растительный материал. Промывается под проточной водой с хозяйственным мылом.

Разводится на 100 мл воды 10 гр. хлорки, это будет дезинфицирующий раствор.

Начинаете работать в комнате с включенной кварцевой лампой. Там же и переодеваетесь в спец одежду. Затем обрабатываете руки и рабочее место спиртом.

На стол ставите три банки со стерильной водой и одну с хлор раствором.

Растительный материал окунаете в раствор. Пинцетом вынимаете один фрагмент через 5 минут, второй через 8, третий через 20 минут. Пинцет после каждого применения накаливайте на огне. Опускаете фрагмент растения в банку с водой на 10 минут. Затем в последующие, для удаления остатков хлора.

На тряпку предварительно обработанную ложится растительный материал. Острым, тонким предметом (скальпель) обожженным над огнем отрезается почка. Под почкой оставляется 5 мм, нал 3 мм. Берете пробирку со специальной смесью и помещаете туда почку. Пробирка герметично закрывается фольгой. Такую операцию проделываете с остальными фрагментами. Не забывайте менять тряпочки и обжигать инструменты после каждого применения.

Теперь пробирки хранятся на полке. Соблюдается 16 часовой световой режим, высокая 70 % влажность. Температура достаточно высокая - 24-28оС. Важно не убить стерилизацией растительный материал, но при этом уничтожить вредоносные бактерии и микробы. В случае правильно проведенной процедуры через месяц появятся крошечные росточки.

Процесс in vitro достаточно щепетилен и требует больших затрат физических ресурсов. Малейший недочет и вся операция будет проведена безуспешно.

Похожие публикации