Строительный портал - DomNaneve

Схема подключения трехфазного электродвигателя к трехфазной сети. Подключение трехфазного двигателя к однофазной сети Двигатель 3 фазы 220 вольт

В статье собраны советы, как можно подключить такой электродвигатель в однофазную сеть без использования конденсаторной батареи или частотного преобразователя за счет импульса тока от электронного ключа. Они дополняются схемами и видеороликом.


Принцип работы электронного ключа

Если собрать обмотки асинхронного электродвигателя по схеме треугольника и подключить к напряжению однофазной сети 220 вольт, то через них станут протекать одинаковые токи, как показано на графике ниже.

Угловое смещение любой обмотки относительно других составляет 120 градусов. Поэтому магнитные поля от каждой из них будут складываться, устранять взаимное влияние.

Создаваемое результирующее магнитное поле статора не будет оказывать влияние на ротор: он останется в состоянии покоя.

Чтобы электродвигатель начал вращение необходимо через его обмотки пропустить сдвинутые на 120° токи, как это делается в нормальной трехфазной системе питания или за счет . Тогда двигатель станет вырабатывать мощность с минимальными потерями, обладая наибольшим КПД.

Широко распространённые промышленные позволяет ему работать, но с меньшим КПД и большими потерями, что, чаще всего, вполне допустимо.

Альтернативными методами являются:

  1. Механическая раскрутка ротора, например, за счет ручной намотки шнура на вал и резкого его прокручивания рывком при поданном напряжении;
  2. Сдвиг фаз токов за счет кратковременного использования электронного ключа, коммутирующего электрическое сопротивление одной обмотки.

Поскольку первый способ «намотал и дернул» не вызывает трудностей, то сразу анализируем второй.

На верхней схеме показан подключенный параллельно обмотке B электронный ключ «k». Это довольно условное обозначение принято для объяснения принципа работы электродвигателя за счет формирования токового импульса.

Как запускается двигатель

Обмотки статора подключены по схеме треугольника. На одну из них (A) подается напряжение 220 вольт. Параллельно ей подключена еще одна цепочка из двух последовательных обмоток (B+C).

По закону Ома напряжение сети создает в них токи. Их величина зависит от сопротивления. Все обмотки одинаковы. Поэтому в (A) ток больше, а (B+C) в 2 раза меньше по величине. Причем по фазе они совпадают. При такой ситуации они не способны создать вращающееся магнитное поле, достаточное для запуска ротора.

Параллельно обмотке (B) подключена электронная схема, обозначенная как ключ K. Он находится в разомкнутом состоянии, но кратковременно замыкается в момент достижения максимального напряжения на обмотке С.

Электронный ключ закорачивает обмотку В и падение напряжения на обмотке С скачком возрастает в два раза, что в итоге и обеспечивает сдвиг фаз токов в обмотках А и С. Важно отметить, что ток в обмотках (А) и (В+С) в этот момент равен нулю.

Угол сдвига фаз φ, необходимый для запуска двигателя, достаточно выдержать в интервале 50÷70°, хотя идеальный вариант - 120.

Конструкция фазосдвигающего электронного ключа может собираться из разных деталей. Наиболее подходящие устройства для бытовых целей по мере их сложности представлены ниже.

Схема запуска электродвигателя до 2 кВт

Ее описание можно найти в №6 журнала Радио за 1996 год. Автор статьи В Голик предлагает конструкцию двунаправленного (положительной и отрицательной полугармоник) электронного ключа на двух диодах и тиристорах с управлением транзисторным блоком.

Описание технологии

Силовые диоды VD1 и VD2 совместно с тиристорами VS1, VS2 образуют мост, который управляется прямым и обратным биполярными транзисторами. Положение подстроечного резистора R7 влияет на напряжение открытия VT1, VT2.

Срабатывание транзисторного ключа обеспечивает кратковременный сдвиг фаз токов в обмотках и создание вращающегося магнитногого поля, раскручивающего ротор.

Благодаря приложенному моменту магнитных сил к ротору, последний начинает вращение. Его энергия постоянно пополняется на каждой полуволне очередным импульсом.

Особенности монтажа

Автор выполнил электронный ключ на стеклопластиковой плате и поместил его в изолированный корпус с возможностью подключения входных и выходных цепей через контактные выводы. Вариант исполнения схемы навесным монтажом тоже имеет право на реализацию.

Для работы электродвигателей небольших мощностей допустимо силовые диоды и тиристоры размещать без радиаторов. Но обеспечить хороший теплоотвод с них и надежную работу лучше заранее, включив эти элементы в конструкцию электронного ключа.

Номиналы электронных компонентов указаны прямо на схеме.

С целью обеспечения безопасности следует хорошо выполнить изоляцию корпуса электронного блока, исключить случайное прикосновение к его деталям во время работы: они все находятся под напряжением 220 вольт.

Принципы наладки

Ползунок резистора R7 «Режим» имеет два крайних положения:

  1. минимального;
  2. и максимального сопротивления.

В первом случае электронный ключ открыт и создает максимальный импульс сдвига тока в обмотке, а во втором - закрыт: вращение ротора исключено.

Запуск трехфазного двигателя осуществляют на максимально допустимом сдвиге фазы тока внутри обмотки. Затем положением R7 выставляют его рабочие обороты и мощность.

Проверенные модели

  1. числом оборотов 1360 и мощностью 370 ватт (АААМ63В4СУ1);
  2. 1380 об/мин, 2 кВт.

Результаты экспериментов его устроили.

Две схемы на симисторах

Следующие 2 конструкции электронного ключа описал В Бурлако в 1999 году. Они опубликованы в журнале Сигнал №4.

Запуск легкого электродвигателя

Устройство разработано для двигателей с мощностью до 2,2 кВт, имеет минимальный набор электронных деталей.

Конденсатор С, обладая емкостным сопротивлением, под действием приложенного к его пластинам напряжения, сдвигает вектор тока вперед на 90 градусов, направляя его на управление динистором VS2.

Разность потенциалов на конденсаторе регулируется суммарным сопротивлением R1, R2. Импульс динистора поступает на управляющий электрод симистора VS1, который вбрасывает ток в обмотку электродвигателя.

Схема пуска двигателя под нагрузкой

Для станков и механизмов, создающих большое противодействие раскрутке ротора, можно порекомендовать переключить обмотки на схему разомкнутой звезды с созданием двух раскручивающих моментов.

Полярность обмоток двигателя указана точками на схеме. Фазосдвигающие цепочки импульсов тока работают по той же технологи, что и в предыдущих случаях. Номиналы электрических деталей проставлены рядом с их графическими обозначениями.

Особенности наладки

Все три контакта этого пускателя при нажатии на кнопку «Пуск» замыкаются одновременно, а при отпускании:

  • два крайних остаются в замкнутом состоянии;
  • средний - разрывается, отключая цепь пусковой обмотки.

Через этот средний контакт в обеих схемах подается импульс тока. Схема работает только на время, необходимое для раскрутки двигателя, после чего выводится из работы, отключается от питающего напряжения.

Момент запуска двигателя в каждой схеме подбирают после подачи напряжения изменением сопротивления R2. При этом в треугольнике до момента раскрутки ротора проходят большие токи, вызывающие сильные вибрации конструкции. Для их уменьшения рекомендуется подбирать фазосдвигающий импульс ступенями, а не плавно.

При оптимальном положении R2 двигатель запускается без вибраций.

Для двигателей небольшой мощности можно осуществлять монтаж симисторов без радиаторов охлаждения, но последние все же повышают надежность схемы.

Мое мнение о методе

В трех рассмотренных схемах ток рабочего режима протекает по всем подключенным обмоткам. Полное расходование приложенной энергии тратится не рентабельно. Только около 30% ее мощности создает вращение ротора. Остальная часть порядка 70% - безвозвратные потери.

Если кого-то устраивает запуск трехфазного двигателя в однофазной сети по этой схеме, то это ваш выбор. Я же сделал обзор этих схем, чтобы показать их положительные и отрицательные стороны, не навязывая собственное мнение.

Этой темой стали массово пользоваться создатели видеороликов на Ютубе, набирая количество просмотров и подписчиков, как ЮКА ЛАХТ, в своем видео «Без конденсаторный запуск трехфазного двигателя».

Делайте выбор осознанно, а если остались вопросы по теме, то сейчас вам удобно задать их в комментариях.

В жизни бывают ситуации, когда нужно запустить 3-х фазный асинхронный электродвигатель от бытовой сети. Проблема в том, что в вашем распоряжении только одна фаза и «ноль».

Что делать в такой ситуации? Можно ли подключить мотор с тремя фазами к однофазной сети?

Если с умом подойти к работе, все реально. Главное - знать основные схемы и их особенности.

Конструктивные особенности

Перед тем как приступать к работе, разберитесь с конструкцией АД (асинхронный двигатель).

Устройство состоит из двух элементов - ротора (подвижная часть) и статора (неподвижный узел).

Статор имеет специальные пазы (углубления), в которые и укладывается обмотка, распределенная таким образом, чтобы угловое расстояние составляло 120 градусов.

Обмотки устройства создают одно или несколько пар полюсов, от числа которых зависит частота, с которой может вращаться ротор, а также другие параметры электродвигателя - КПД, мощность и другие параметры.

При включении асинхронного мотора в сеть с тремя фазами, по обмоткам в различные временные промежутки протекает ток.

Создается магнитное поле, взаимодействующее с роторной обмоткой и заставляющее его вращаться.

Другими словами, появляется усилие, прокручивающее ротор в различные временные промежутки.

Если подключить АД в сеть с одной фазой (без выполнения подготовительных работ), ток появится только в одной обмотке.

Создаваемого момента будет недостаточно, чтобы сместить ротор и поддерживать его вращение.

Вот почему в большинстве случаев требуется применение пусковых и рабочих конденсаторов, обеспечивающих работу трехфазного мотора. Но существуют и другие варианты.

Как подключить электродвигатель с 380 на 220В без конденсатора?

Как отмечалось выше, для пуска ЭД с короткозамкнутым ротором от сети с одной фазой чаще всего применяется конденсатор.

Именно он обеспечивает пуск устройства в первый момент времени после подачи однофазного тока. При этом емкость пускового устройства должна в три раза превышать этот же параметр для рабочей емкости.

Для АД, имеющих мощность до 3-х киловатт и применяемых в домашних условиях, цена на пусковые конденсаторы высока и порой соизмерима со стоимостью самого мотора.

Следовательно, многие все чаще избегают емкостей, применяемых только в момент пуска.

По-другому обстоит ситуация с рабочими конденсаторами, использование которых позволяет загрузить мотор на 80-85 процентов его мощности. В случае их отсутствия показатель мощности может упасть до 50 процентов.

Тем не менее, бесконденсаторный пуск 3-х фазного мотора от однофазной сети возможен, благодаря применению двунаправленных ключей, срабатывающих на короткие промежутки времени.

Требуемый момент вращения обеспечивается за счет смещения фазных токов в обмотках АД.

Сегодня популярны две схемы, подходящие для моторов с мощностью до 2,2 кВт.

Интересно, что время пуска АД от однофазной сети ненамного ниже, чем в привычном режиме.

Основные элементы схемы - симисторы и симметричный динистры. Первые управляются разнополярными импульсами, а второй - сигналами, поступающими от полупериода питающего напряжения.

Схема №1.

Подходит для электродвигателей на 380 Вольт, имеющих частоту вращения до 1 500 об/минуту с обмотками, подключенными по схеме треугольника.

В роли фазосдвигающего устройства выступает RC-цепь. Меняя сопротивление R2, удается добиться на емкости напряжения, смещенного на определенный угол (относительно напряжения бытовой сети).

Выполнение главной задачи берет на себя симметричный динистор VS2, который в определенный момент времени подключает заряженную емкость к симистору и активирует этот ключ.

Схема №2.

Подойдет для электродвигателей, имеющих частоту вращения до 3000 об/минуту и для АД, отличающихся повышенным сопротивлением в момент пуска.

Для таких моторов требуется больший пусковой ток, поэтому более актуальной является схема разомкнутой звезды.

Особенность - применение двух электронных ключей, замещающих фазосдвигающие конденсаторы. В процессе наладки важно обеспечить требуемый угол сдвига в фазных обмотках.

Делается это следующим образом:

  • Напряжение на электродвигатель подается через ручной пускатель (его необходимо подключить заранее).
  • После нажатия на кнопку требуется подобрать момент пуска с помощью резистора R

При реализации рассмотренных схем стоит учесть ряд особенностей:

  • Для эксперимента применялись безрадиаторные симисторы (типы ТС-2-25 и ТС-2-10), которые отлично себя проявили. Если использовать симисторы на корпусе из пластмассы (импортного производства), без радиаторов не обойтись.
  • Симметричный динистор типа DB3 может быть заменен на KP Несмотря на тот факт, что KP1125 сделан в России, он надежен и имеет меньше переключающее напряжение. Главный недостаток - дефицитность этого динистора.

Как подключить через конденсаторы

Для начала определитесь, какая схема собрана на ЭД. Для этого откройте крышку-барно, куда выводятся клеммы АД, и посмотрите, сколько проводов выходит из устройства (чаще всего их шесть).

Обозначения имеют следующий вид: С1-С3 - начала обмотки, а С4-С6 - ее концы. Если между собой объединяются начала или концы обмоток, это «звезда».

Сложнее всего обстоят дела, если с корпуса просто выходит шесть проводов. В таком случае нужно искать на них соответствующие обозначения (С1-С6).

Чтобы реализовать схему подключения трехфазного ЭД к однофазной сети, требуются конденсаторы двух видов - пусковые и рабочие.

Первые применяются для пуска электродвигателя в первый момент. Как только ротор раскручивается до нужного числа оборотов, пусковая емкость исключатся из схемы.

Если этого не происходит, возможные серьезные последствия вплоть до повреждения мотора.

Главную функцию берут на себя рабочие конденсаторы. Здесь стоит учесть следующие моменты:

  • Рабочие конденсаторы подключаются параллельно;
  • Номинальное напряжение должно быть не меньше 300 Вольт;
  • Емкость рабочих емкостей подбирается с учетом 7 мкФ на 100 Вт;
  • Желательно, чтобы тип рабочего и пускового конденсатора был идентичным. Популярные варианты - МБГП, МПГО, КБП и прочие.

Если учитывать эти правила, можно продлить работу конденсаторов и электродвигателя в целом.

Расчет емкости должен производиться с учетом номинальной мощности ЭД. Если мотор будет недогружен, неизбежен перегрев, и тогда емкость рабочего конденсатора придется уменьшать.

Если выбрать конденсатор с емкостью меньше допустимой, то КПД электромотора будет низким.

Помните, что даже после отключения схемы на конденсаторах сохраняется напряжение, поэтому перед началом работы стоит производить разрядку устройства.

Также учтите, что подключение электродвигателя мощностью от 3 кВт и более к обычной проводке запрещено, ведь это может привести к отключению или перегоранию пробок. Кроме того, высок риск оплавления изоляции.

Чтобы подключить ЭД 380 на 220В с помощью конденсаторов, действуйте следующим образом:

  • Соедините емкости между собой (как упоминалось выше, соединение должно быть параллельным).
  • Подключите детали двумя проводами к ЭД и источнику переменного однофазного напряжения.
  • Включайте двигатель. Это делается для того, чтобы проверить направление вращения устройства. Если ротор движется в нужном направлении, каких-либо дополнительных манипуляций производить не нужно. В ином случае провода, подключенные к обмотке, стоит поменять местами.

С конденсатором дополнительная упрощенная — для схемы звезда.

С конденсатором дополнительная упрощенная — для схемы треугольник.

Как подключить с реверсом

В жизни бывают ситуации, когда требуется изменить направление вращения мотора. Это возможно и для трехфазных ЭД, применяемых в бытовой сети с одной фазой и нулем.

Для решения задачи требуется один вывод конденсатора подключать к отдельной обмотке без возможности разрыва, а второй - с возможностью переброса с «нулевой» на «фазную» обмотку.

Для реализации схемы можно использовать переключатель с двумя положениями.

К крайним выводам подпаиваются провода от «нуля» и «фазы», а к центральному - провод от конденсатора.

Как подключить по схеме «звезда-треугольник» (с тремя проводами)

В большей части в ЭД отечественного производства уже собрана схема звезды. Все, что требуется - пересобрать треугольник.

Главным достоинством соединения «звезда/треугольник» является тот факт, что двигатель выдает максимальную мощность.

Несмотря на это, в производстве такая схема применяется редко из-за сложности реализации.

Чтобы подключить мотор и сделать схему работоспособной, требуется три пускателя.

К первому (К1) подключается ток, а к другому - обмотка статора. Оставшиеся концы подключаются к пускателям К3 и К2.

Когда к фазе подключается пускатель К3, остальные концы укорачиваются, и схема преобразуется в «звезду».

Учтите, что одновременное включение К2 и К3 запрещено из-за риска короткого замыкания или выбиванию АВ, питающего ЭД.

Чтобы избежать проблем, предусмотрена специальная блокировка, подразумевающая отключение одного пускателя при включении другого.

Принцип работы схемы прост:

  • При включении в сеть первого пускателя, запускается реле времени и подает напряжение на третий пускатель.
  • Двигатель начинает работу по схеме «звезда» и начинает работать с большей мощностью.
  • Через какое-то время реле размыкает контакты К3 и подключает К2. При этом электродвигатель работает по схеме «треугольник» со сниженной мощностью. Когда требуется отключить питание, включается К1.

Итоги

Как видно из статьи, подключить электродвигатель трехфазного тока в однофазную сеть без потери мощности реально. При этом для домашних условий наиболее простым и доступным является вариант с применением пускового конденсатора.

В этой статье мы рассмотрим подключение 3-х фазного асинхронного двигателя в однофазную сеть 220 В .
Так как не в каждом гараже есть 3 фазы, что бы подключить асинхронный двигатель, но необходимость в этом зачастую происходит.

Немного поговорим о теории и принципе работы АД:

Асинхронный двигатель состоит из статора и ротора.Обмотка ротора короткозамкнутая,а обмотка статора представляет собой 3-х фазную обмотку проводники, в которой пофазно расположены в окружности статора со сдвигом в 120 градусов.

При включении двигателя в 3-х фазную сеть, по обмоткам (полюсам) статора начинает проходить ток в разные моменты, поочередно, сначала в фазе «А «, потом в фазе «В «, после в фазе «С «,этим он создает вращающиеся магнитное поле, которое вращает ротор.

При включение его в однофазную сеть, вращающий момент, будет создаваться только в одной обмотке, этого не хватит, для того что бы сдвинуть и вращать ротор. Для того что бы сдвинуть ток фазы полюса, используются фазосдвигающие конденсаторы.

Конденсаторы можно применять любых типов, кроме электролитических. В основном применяются бумажные конденсаторы марки МБГО, напряжение которых нужно выбирать не мене 20 — 30 В больше напряжения сети. В нашем случае берем конденсатор напряжением не менее 250 В.

О его емкости поговорим немного позже.

конденсаторы марки МБГО

Итак, что бы его подключить нужно знать характеристики АД, которые выбиты в его паспорте на корпусе:

По тех паспорту мы видим что этот двигатель имеет мощность 0,75 кВт,номинальные обороты 910 об./мин. с возможностью работы в 2 х режимах подключения (треугольник) и Y (звезда). Для работы двигателя в схеме включения (треугольник), номинальное напряжения 220 В номинальный ток 3,96 А , для звезды соответственно 380 В , 2,29 А .

Теперь адаптируем его под наше напряжение 220 В, то есть соединяем его в нашем случае в (тругольник), как показано на картинке (б ) , на картинке (а ) показано схема подключения в звезду, снизу показано расположение перемычек для данного подключения:

Теперь нужно выбрать емкость конденсатора, для этого возвращаемся к техническим параметрам эл.двигателя берем оттуда Iн и Uн, в нашем случае это 3,96 А и 220 В подставляем его в формулу:

C р = 2780 (I н / U н) = 2780 (3,96/220)=2780 0,018= 50,04 мкФ

(если не хватает емкости одного конденсатора, то соединяем паралельно несколько конденсаторов, при паралельном подключении емкость конденсатора складывается)

Теперь подключаем наш конденсатор согласно рисунку 1 .

Чтобы поменять направление вращения ротора, меняем точку подключения конденсатора.

Пожалуй, наиболее распространённый и простой способ подключения трехфазного электродвигателя в однофазную сеть при отсутствии питающего напряжения ~ 380 в - это способ с применением фазосдвигающего конденсатора, через который запитывается третья обмотка электродвигателя. Перед тем, как подключать трехфазный электродвигатель в однофазную сеть убедитесь, что его обмотки соединены "треугольником" (см. рис. ниже, вариант 2), т. к. именно это соединение даст минимальные потери мощности 3х-фазного двигателя при включении его в сеть ~ 220 в.

Мощность, развиваемая трехфазным электродвигателем, включенным в однофазную сеть с такой схемой соединения обмоток может составлять до 75% его номинальной мощности. При этом частота вращения двигателя практически не отличается от его частоты при работе в трёхфазном режиме.

На рисунке показаны клеммные колодки электродвигателей и соответствующие им схемы соединения обмоток. Однако, исполнение клеммной коробки электродвигателя может отличаться от показанного ниже - вместо клеммных колодок, в коробке может располагаться два разделённых пучка проводов (по три в каждом).

Эти пучки проводов представляют собой "начала" и "концы" обмоток двигателя. Их необходимо «прозвонить», чтобы разделить обмотки друг от друга и соединить по нужной нам схеме "треугольник" - последовательно, когда конец одной обмотки соединяется с началом другой т. д (С1-С6, С2-С4, С3-С5).

При включении трёхфазного электродвигателя в однофазную сеть, в схему "треугольник" добавляются пусковой конденсатор Сп, который используется кратковременно (только для запуска) и рабочий конденсатор Ср.

В качестве кнопки SB для запуска эл. двигателя небольшой мощности (до 1,5 кВт) можно использовать обычную кнопку "ПУСК", применяемую в цепях управления магнитных пускателей.

Для двигателей большей мощности стоит заменить её на коммутационный аппарат помощнее — напр, автомат. Единственным неудобством в этом случае будет необходимость ручного отключения конденсатора Сп автоматом после того как электродвигатель наберёт обороты.

Таким образом, в схеме реализована возможность двухступенчатого управления электродвигателем, уменьшая общую ёмкость конденсаторов при "разгоне" двигателя.

Если мощность двигателя невелика (до 1 кВт), то запустить его можно будет и без пускового конденсатора, оставив в схеме лишь рабочий конденсатор Ср.


  • С раб = 2800 . I / U, мкФ - для двигателей, включенных в однофазную сеть с соединением обмоток "звезда".

Это наиболее точный способ, требующий, однако, измерения тока в цепи электродвигателя. Зная номинальную мощность двигателя, для определения ёмкости рабочего конденсатора лучше воспользоваться следующей формулой:

С раб = 66·Р ном, мкФ, где Р ном — номинальная мощность двигателя.

Упростив формулу, можно сказать, что для работы трёхфазного электродвигателя в однофазной сети, ёмкость конденсатора на каждые 0,1 кВт его мощности должна составлять около 7 мкФ.

Так, для двигателя мощностью 1,1 кВт ёмкость конденсатора должна составлять 77 мкФ. Такую ёмкость можно набрать несколькими конденсаторами, соединёнными друг с другом параллельно (общая ёмкость в этом случае будет равна суммарной), используя следующие типы: МБГЧ, БГТ, КГБ с рабочим напряжением, превышающим напряжение в сети в 1,5 раза.

Рассчитав ёмкость рабочего конденсатора можно определить ёмкость пускового — она должна превышать ёмкость рабочего в 2-3 раза. Применять конденсаторы для запуска следует тех-же типов, что и рабочие, в крайнем случае и при условии очень кратковременного запуска можно применить электролитические — типов К50-3, КЭ-2, ЭГЦ-М, рассчитанных на напряжение не менее 450 в.

Как подключить трёхфазный двигатель к однофазной сети.


подключение двигателя 380 на 220 вольт


правильный подбор конденсаторов для электродвигателя

Инструкция

Как правило, для подключения трёхфазного электродвигателя используют три провода и напряжение питания 380 . В сети 220 вольт только два провода, поэтому, чтобы двигатель заработал, на третий провод тоже нужно подать напряжение. Для этого используют конденсатор, который называют рабочим конденсатором.

Емкость конденсатора зависит от мощности двигателя и рассчитывается по формуле:
C=66*P, где С – ёмкость конденсатора, мкФ, P – мощность электродвигателя, кВт.

То есть, на каждые 100 Вт мощности двигателя необходимо подобрать около 7 мкФ ёмкости. Таким образом, для двигателя мощностью 500 ватт нужен конденсатор ёмкостью 35 мкФ.

Необходимую ёмкость можно собрать из нескольких конденсаторов меньшей ёмкости, соединив их параллельно. Тогда общую ёмкость считают по формуле:
Cобщ = C1+C2+C3+…..+Cn

Важно помнить о том, что рабочее напряжение конденсатора должно быть в 1,5 раза больше питания электродвигателя. Следовательно, при напряжении питания 220 вольт конденсатор должен быть на 400 вольт. Конденсаторы можно использовать следующего типа КБГ, МБГЧ, БГТ.

Для подключения двигателя используют две схемы подключения – это «треугольник» и «звезда».

Если в трёхфазной сети двигатель был подключен по схеме «треугольник», тогда и к однофазной сети подключаем по этой же схеме с добавлением конденсатора.

Подключение двигателя «звездой» выполняют по следующей схеме.

Для работы электродвигателей мощность до 1,5 кВт достаточно ёмкости рабочего конденсатора. Если подключить двигатель большей мощности, то такой двигатель будет очень медленно разгоняться. Поэтому необходимо использовать пусковой конденсатор. Он подключается параллельно рабочему конденсатору и используется только во время разгона двигателя. Потом конденсатор отключается. Ёмкость конденсатора для запуска двигателя должна быть в 2-3 раза больше ёмкости рабочего.

После запуска двигателя определите направление вращения. Обычно необходимо, чтобы двигатель вращался по часовой стрелке. Если вращение происходит в нужном направлении ничего делать не нужно. Чтобы сменить направление, необходимо сделать перемонтаж двигателя. Отключите два любых провода, поменяйте их местами и снова подключите. Направление вращения сменится на противоположное.

При выполнении электромонтажных работ соблюдайте правила техники безопасности и используйте индивидуальные средства защиты от поражения электрическим током.

Трехфазный электро не содержит щеток, способных изнашиваться и требующих периодической замены. Он менее эффективен, чем коллекторный, но значительно эффективнее асинхронного однофазного. Недостатком его являются значительные габариты.

Инструкция

Найдите на трехфазном электродвигателе шильдик. На нем указаны два напряжения, например: 220/380 В. Питать двигатель можно любым из этих напряжений, важно лишь правильно соединить его обмотки: для меньшего из указанных напряжений - треугольником, для большего - звездой.

Похожие публикации